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NOMENCLATURE

a wave number defined as 2rA
A defined as (TI-Tm)/(TI-T 2), also aspect ratio H/W, H/D
Bi Bio: number, lid/k
Ci  wave speed, specific heat of ice

Cp specific heat of water
D gap width, depth, diameter
d total layer depth, diameter

dc critical layer depth (depth at onset of convection)

df final diameter
Fo Fourier number, defined as w1L 2

g gravitational acceleration

Gr Grashof number, gy 1T1
2h3/V2 defined in eq 19

Grc modified Grashof number, P1 gTih3/v2 defined in eq 20
H total layer depth (= h when T2 5 40C), also height
h heat transfer coefficient, and also depth of unstable layer
hc  critical unstable layer depth

k thermal conductivity
K, R" ratio of rolri

L gap width (= (do-di)12), also length or height

L f latent heat of fusion
Ma Marangoni number defined as uo,'(To-Ti)H/(pva)
Nu Nusselt number, defined as q"DIk(Th-Tc), also defined in eq 26
Nulo€  Local Nusselt number defined in eq 50, 64 and 65.
Nu(x) average Nusselt number over a vertical cross section defined in eq 7 2
Nu average Nusselt number, also average Nusselt number based on inner

diameter defined in eq 51
Nu average Nusselt number defined as 1 (Nu) d
p, pressure Jo

p modified pressure defined asp' + pcgz

P dimensionless pressure defined as pD2/p v c2

Pr Prandtl number c PP/I
q local heat flux, also exponent defined in eq 37

q" heat flux

Q overall heat transfer rate
Qt total heat transfer rate per unit length
RH thermal resistance of hot-side boundary

Rc  thermal resistance of cold-side boundary
R" density distribution parameter defined in eq 43 and eq 69 (Tm-Tc)/(Th-Tc)

R" radius ratio rodr i
R dimensionless radius, (r-ri)/L, (r-ri)/(r-ri) or (r-ri)/D
R+, R" dimensionless radial coordinate, r/L

vi



Ra Rayleigh number defined as in eq 1, also as gyL(Th-Tc)2v

Ra* Rayleigh number defined as p (-p- p (0"' ) gD 3 /g2

Ra n  defined as gP 2Yi3(T -To) 2/vt

Rac  critical Rayleigh number

Rac modified critical Rayleigh number defined as in eq 17 and 18
Race experimental critical Rayleigh number defined in eq I I a and 11 b

Ra YH hot-side Rayleigh number for fluid with density extremum defined in eq 36
RaYc cold-side Rayleigh number for fluid with density extremum defined in eq 36

Ra' Rayleigh number defined in eq 42

Ra" Rayleigh number defined as g32Y1 
3(Ti-T o )2 /va

Ra" Rayleigh number defined as gpmajL3(Th-Tc)q/PcV

RaH Rayleigh number defined in eq 27

Ra G  Rayleigh number based on gap width defined as gP2(ro-ri)3(Ti-To)/Va

S shape factor defined in eq 96

St Stefan number defined as Cp(Tm-T)/L f

T temperature

Ta Taylor number
TI  lower boundary temperature

T2  upper boundary temperature
AT temperature difference across the layer, T-T 2, also TO-T i

Tm temperature at maximum density

ATce experimental critical temperature difference

ATct theoretical critical temperature difference

Th hot wall temperature

Tc  cold wall temperature

T defined as (Th+Tc)/ 2

Tio initial ice temperatureI0 temperature of outer cylinder

T7i temperature of inner cylinder

T height-averaged hot wall temperature
Tc height-averaged cold wall temperature

Tavg defined as (fH + TO)/2

T, surface temperature

Ta ambient air temperature

T. ice temperature

Ti. inversion temperature

Tr reference temperature

T bulk water temperature

t time

tc  critical time, critical melting time
u radial velocity

v axial velocity, angular velocity

U dimensionless radial velocity uD/vC, uL/

V dimensionless axial velocity and angular velocity, vD/v c and vL/a

vii



U dimensionless mean-base flow velocity
W width

x,y,z coordinates

X,YZ dimensionless coordinates defined as xID, xIL, y/D, yIL and zID.

Greek letters

3 volumetric coefficient of expansion

P1,[P2 coefficient of expansion evaluated at T, and T2.also coefficient defined in eq 54

PO coefficient defined in eq 21 T
13 mean volumetric coefficient of expansion defined as iTo 13(T) dT

coefficients defined in eq 61 Jo

01, 32, P33 coefficient defined in eq 97a
9. viscosity, ratio of angular velocity (912/I 1 )

v kinematic viscosity

a thermal diffusivity

OLI coefficient defined in eq 37

p density

Pr reference density

Pm maximum density

P average density

y coefficient defined in eq 2

' 12 coefficient defined in eq 4

" inversion parameter defined as -2(Tm-To)/(To-Ti) (= -2R')
)II X2  thermal parameters defined in eq 6 and 7

1angular velocity, also dimensionless vorticity oL2/a

8 H  scale of hot-side boundary layer thickness defined by eq 32

8c  scale of cold-side boundary layer thickness defined by eq 33
angular function from vertical axis

linear coefficient of density-temperature relation

0 dimensionless temperature defined as (T-T,)I(To-Ti) or (T-Tc)/(Th-TC)

0' defined as (T-To)/(Ti-To) = 1-0
0" defined as (T-7)/(Th-Tr)

0" defined as (T-Ta)/(T-Ta)

8"' defined as (T-Ts)(To-Ts)

e_ coefficient of heat transfer coefficient defined in eq 55

vorticity

dimensionless vorticity, 4L 2/v

V stream function

'V dimensionless stream function q/v

viii



Subscripts

a ambient
1, 2 lower, upper also inner and outer
i inner
c critical, cold
1oc local
h, H hot
avg average
iv inversion
s surface
m maximum
r reference
o outer, initial and reference
00 bulk
f final
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Natural Convection Heat Transfer in
Water Near its Density Maximum

YIN-CHAO YEN

INTRODUCTION

The most comprehensive treatment of cold regions heat transfer processes is given by Lunardini
(1981, 1988). He discusses the mechanisms of frost heave and their relation to soil composition and
properties, methods of calculating or approximating the extent of ground freezing and thawing with
uniform or variable thermal properties, and transfer processes associated with structures in cold
climates. In contrast, this monograph deals exclusively with the phenomena arising from the density
anomaly of water that is formed by melting ice in either an ice-water system or in single-phase water
that encompasses the density extremum. The effect of this density anomaly on the onset of convection
(i.e., thermal instability), the transient and steady temperature structure within the water layer, and the
associated heat transfer rate will be examined and summarized in various geometrical arrangements.

GENERAL DESCRIPTION
OF RAYLEIGH INSTABILITY

For fluids not undergoing phase change or density inversion, the magnitude of the Rayleigh number
is the criterion commonly used to determine if natural convection is significant:

Ra- g1(AT)d 3  (1)
Va

where 13 = the coefficient of expansion
v = the kinematic viscosity
(x = the thermal diffusivity of the fluid
d = the depth of the fluid layer

g = the gravitational acceleration
AT = the temperature difference across the liquid layer.

v, v and a are usually evaluated at the arithmetic average of lower and upper boundary temperatures.
For normal fluids with density decreasing with increasing temperature, it has been determined
analytically and confirmed experimentally that the liquid will go into motion at a Rayleigh number of
about 1708 for both lower and upper rigid boundaries and constant temperatures.



The ice-water system, in which the water accumulates continuously by melting from below, forms
in the lower part of the system, and is subject to a negative temperature gradient, resembles the classical
Rayleigh problem. However, the melting system differs fundamentally in a number of ways from that
of the classical Rayleigh problem: 1) for an ice-water system, water may not act as a normal fluid
because of its peculiar properties of density inversion at 4°C; therefore, ideally, a stable and unstable
region may exist simultaneously in the water layer, 2) the upper boundary (water/ice interface) is
moving upward as melting progresses so that it can be considered neither a rigid nor a free boundary,
and 3) though both boundaries are maintained at fixed temperatures, the upper boundary is moving;
therefore, a time-dependent temperature gradient exists across the layer.

For the case of the ice-water system, with the water layer formed by melting ice from above, the
water layer will be situated over the remaining ice. For normal fluids, the system will always be stable.
However, in the case of water near the water/ice interface, there exists a region with a positive density
and temperature gradient directed away from the interface. This is a system equivalent to the case of
a water layer heated above ( 4*C) and cooled below at 0C in which a stable region will sit on an
unstable region. A convective motion is thus created in the layer for both cases, involving either phase
change (i.e., in a ice-water system) or a single phase (i.e., in water alone), either when 1) the lower
is maintained at 8*C (i.e., heating from below) and the upper boundary is at 00 C (equivalent to the case
of melting from below), or 2) the upper boundary is maintained at 80 C and the lower is at 00 C
(equivalent to melting from above). When the value of P in eq I is evaluated at 8/2 = 4*C [P3 = l/p (ap/
d ) 4. C =0],one may face the contradictory situation of observing convection withRa =0, which violates
the classical stability criterion.

EFFECT OF 40C WATER
ON ONSET OF CONVECTION

In a confined horizontal layer
When a layer of liquid whose density decreases monotonically with the increase of temperature is

subject to an adverse temperature gradient (say T1 > T2 where subscripts I and 2 refer to lower and
upper surfaces, respectively) the system is potentially unstable because it is top-heavy. The onset of
convection is indicated ifthe Rayleigh numberexceeds its critical value. For normal fluid, the Rayleigh
number is defined as in eq 1.

A somewhat complicated situation arises if the liquid possesses a maximum density within the
temperature range between T, and T 2 (such a situation could exist either in a water layer formed by
melting ice, i.e., ice-water system, or in a water layer by maintaining the boundary layer temperatures
in such a manner that a maximum density will exist within the layer). In such a case, the liquid density
increases upward from the lower surface until it reaches a maximum and decreases afterward.
Therefore, only part of the liquid layer is potentially unstable. Furthermore, the onset of convection
is possible with both heating from below and above.

For liquids with a density-temperature relationship expressed by

p = p [I - y(T- Ti)2] (2)

Veronis (1963), Debler (1966) and Tien (1968) all have found that the critical Rayleigh number is
dependent upon the temperature difference ratio defined as A = (Ti-Tm)/(TI-T 2) with the Rayleigh
number given by

Ra = 2y (TI- Tm) g (T! - T 2) d3  (3)
va

2



where y is the temperature coefficient of eq 2, and Tm is the temperature corresponding to maximum

density.
The major limitation of these earlier works is that the particular temperature-density relationship

used has only a limited range of applicability. For the case of water, the representation of the

temperature-density relation by a parabolic expression is only valid for the temperature range from

0' to 8°C. The other limitation was that these investigations were restricted to the special case of two
rigid boundary surfaces.

Sun et al. (1969) extended these earlier works by representing the density-temperature relationship

with

P = Pm [I- yi (T- Tm)2 - 72 (T- Tm) 3 ]  (4)

which was found to be valid for water temperature from 0* to 30'C. They also broadened their in-

vestigation by including the rigid-free hydrodynamic boundary, in addition to rigid-rigid boundary.

Using the classical stability analysis, they derived a new Rayleigh number as

2yAg (AT) 2 d3 (1 + I Y2 AAT)
Ra = 2')' (5)

in terms of thermal parameters

[1+3 _2 AATi
= (..) 71 Ti (6)

A 1+2 )L2-A AIT
L 2 T J

and

I- Y2- AA T
X2 = 1! -/ 2 )72 /(7)

'A 2 2 l + ALIT
2 7i 

The critical Rayleigh number has been computed for the range of -4.25 < 1 < -0.5 and -1.4 < X2

< 1.6. For the special case X2 = 0 (equivalent only to the parabolic density-temperature relation, where

y, is only a function of the temperature difference ratio A since '2 = 0), the critical Rayleigh number

for both rigid-free and rigid-rigid boundary conditions is shown in Figure 1. The effect of X2 on Ra.

is shown in Figures 2 and 3, respectively, for rigid-free and rigid-rigid boundaries.
It can be seen from Figure 1, that forXI > - 1 .75, the values of (Rac) . 0 are nearly equal to each other

for the conditions of rigid-free and rigid-rigid boundaries.
Chandrasekhar (1961) derived, for the use of rigid-rigid boundary, the asymptotic expression for

Ra c as

Rac - 1, 186 AI)4 (8)

in terms of the work reported by Sun et al. (1969). Equation 8 then becomes

Ra, - 1,186 (X.) 4, for X2 = 0. (9)

3



Rigid-rigid
-- Rigid-free

i0 s

10
4

0

- / :

7

10 3 L I IJ
-I -2 -3 -4 Figure 1. Critical Rayleigh numberfor

X> = 0 (after Sun et al. 1969).

-. X=-1.50

' - 0.75

S1.2- -0.50\

0.8

0.4 Figure 2. (Rac)A21(Rac)A2=o vs )L2 with X, as

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 parameter for rigid-free case (after Sun et al.
>1 21969).

Though the above approximation is obtained for the rigid-rigid surfaces, this is expected to hold true
for rigid-free surfaces and for the case of melting from below. There is no proof in the case of melting
from above, where the unstable region is above the moving water/ice interface. Fora layerofmaximum
density fluid subject to temperatures from above and below, which are on either side of the maximum
density temperature, the density of the fluid first increases upward from the lower surface to a
maximum then decreases. The fluid layer, therefore, consists of a potentially unstable layer (with a
height of Ad) and a stable layer. The upper boundary effect (i.e., one with free or rigid upper surfaces)

4
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0.4 o Experimentol
I I I I _

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 10 0 4 12 16 20 24 28

>1 2  T, or T2 ( C)

Figure 3. (Rac)v2s(Rac))2=o VS'%2 with X, as pa- Figure 4. Racas function ofT, or T2 (after Sun et al.
rameter for rigid-rigid case (after Sun et al. 1969).
1969).

is felt only indirectly by the potentially unstable layer. This boundary effect would become less
significant as the relative thickness of the stable layer to that of the potentially unstable layer increases,
which corresponds to a decreasing value ofA or an increasing value of-k, (see Fig. 1). For the limiting
case where A - 0, T, = Tm, and the fluid layer is always stable. Figure 4 completely supports this
argument. Although the curve for the rigid-rigid case differs from that of rigid-free case for small
values of (-1), both curves approach the same asymptotic condition for (-XI) > 3.0 and become
indistinguishable. The asymptotic expression is found to be

(Rac) X2 o - 1,177 (,l) 4
. (10)

This is essentially the same as eq 9, with a less than 1% difference in coefficient which, in all
probability, can be attributed to errors introduced in the numerical computations.

Experimental verification
Yen (1968), Yen and Galea (1969), Sun et al. (1969) and Yen (1980) verified the above findings by

performing melting experiments in both melting modes (i.e., melting from below and above). In both
cases, bubble-free ice was fabricated, and the melting system was maintained airtight (any trace of air
trapped in the water/ice interface would drastically affect the melting mechanism). In these experiments
the onset of convection was found either by determining the inflection point on the melting front vs
time plot or by determining the time where the steep jump in the temperature gradient of the stable
region occurred. If the values of T, (TI > 00 C, melting from below) and T2 (T2 > 00 C melting from
above) and the critical layer depths determined by either of the mentioned methods (i.e., inflection
point or sudden jump in the temperature gradient) are known, the experimental critical Rayleigh
number can be found from

5



(2yIT.mT2 gd4) 1 - 3 Y2 ) Tm
Race = (" (2 Yi) (I la)

for melting from above. The corresponding values of X, and X2 are given by

(1-3 2 Tr1

2Y i

and

X (T 2 )2 [(13Y2 1  (13a).2~~ ~ ~~ Y i --,L( 1a

to compute the theoretical critical Rayleigh number. For melting from below, the value ofRace is found
from

[(2,y T, g) (TI-Tm) (I+3 _1) (Tl-Tm)] b
Rac;e = VL 2 F-)(I )](I lb)

vax

with the corresponding values of X, and X2 as

______ 1+ 3 2- (T,~ )

T l - TM) (I (2b)+2 7

and

Ra 1>ORa2 O R Ra' TI2
Sta .Tle T

Only lower layer
is unstable table

Un Stable
04- Ra,, Ra2 ' 0
°  \\ \\\\

Unstable

I Ro>O, Ra2<0
T2 Only lower layer

oc Stable is unstable

RO,, R02<O

0 T,/ -- 4 8

0,< o ,>o Figure5. Principalstabilitydiagram(afterMerker
et al. 1979).
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-2 1 32 (Ti- Tm)1
X Tm 2 Yj (13b)

1 LI+3 Y2 (TI-Tm)
2 71

The experimental values of Race from eq 11 a and eq II b are compared with Ract values obtained by
using X and X2 values from eq 12 and 13 in conjunction with Figures I and 3. The comparison is shown
in Figure 4. Within the experimental error in determining the critical layer depth dc (which is exem-
plified by its presence as dc3 in eq 1 la and 1 lb), it can be concluded that Race and Ract are nearly in
complete agreement.

The other comprehensive analysis of the onset of convection (i.e., critical Rayleigh number) in a
water layer encompassing the density anomaly was reported by Merker et al. (1979). In their study,
the density-temperature relation of water was approximated by three different polynomials having
two, three and five terms. Linear stability analysis was used and the resulting perturbation equations
were solved with the aid of Galerkin's method. Figure 5 is a general diagram of regions, in which the
fluid is purely stable, unstable or only unstable at the lower layer, according to the imposed boundary
temperatures of T, and T2 .03, and P2 are the coefficients of tnermal expansion evaluated at T, and T2,
respectively, and the values of Rai and Ra 2 are the corresponding Rayleigh numbers defined as in eq
I with AT = T, - T2. Ra I is always defined as positive if the layer is unstably stratified, whereas Ra2
changes sign. Therefore Rai was used by Merker et al. (1979) to describe the layer stability.

Figure 6 shows the critical Rayleigh number variation with T, in the case of constant boundary
temperature (i.e., Tw = constant) with the density-temperature relation represented by a polynomial
of orderp = 5 and n = 7 (number of Galerkin terms). Figure 7 shows the case of constant wall heat flux
density (i.e., qw = constant). Both figures show that in the region below the isotherm T2 = 4C, the water
layer has a density profile with no maximum value; i.e., the layer is completely unstably stratified. For
this case, the bending of the density profile is weak, and accordingly, the effect on the critical Rayleigh
number is small. The calculated Rac values are between 1708 and 3600 for T, = constant and below
720 and 1600 for qw = constant. The region above the isotherm T2 = 4C refers to adensity profile with
maximum value; i.e., only a part of the layer is unstably stratified. The nonlinearity of the density
profile is strong and the effect on Rac is great. The Rac values are significantly larger than those
obtained from the classical problem. The usage of Figure 6 or 7 can be delineated by considering the
following cases:

I. If the temperature T2 < 4'C (say T2 = 00C) then cooling this water layer with T, < 00 C from
below results in an unstable stratification where the bending of the profile is weak. The water
layer is stable if heated from below with temperature 0 > TI > 4

0C and it becomes partially
unstable if T, exceeds 40C. The density profile then includes the maximum density and the
bending of the profile is strong.

10
T".= Const. _-12 p.5 -

8 0 n 7

104 4

5

Figure 6. Critical Rayleigh number Rac as
function of T ,with T2 as a pa rameterfor Tw  I 710 - , I - I
(walitemperature) = constant(afterMerker -5 0 4 10 20 30 40

et al. 1979). T, ("C)
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2. If T2 is kept at T2 > 4°C (say T2 = 8°C) then cooling this water from below with T, <4 0 C results
in the upper part between the upper boundary and the 4°C isotherm remaining stable, whereas
the lower part becomes unstable. The strong bending of the profile affects the Rayleigh number
considerably.The layer is stable if cooled with temperature T, between 4and 8°C, and is unstably
stratified if heated from below with T, > 8°C.

Forconstant wall temperature and rigid boundary conditions, this study should be comparable to that
of Sun et al. (1969) even though the Rayleigh number is defined here classically (except that 03 is
evaluated at the lower boundary temperature or T I) and that of Sun et al. (1969) is defined by eq 5.
ForT, = 10"C and T 2 = 0°C (i.e., the case of melting from below) the values ofX, and X are 1.527 and
0.217, respectively, based on eq 12b and 13b. In Figures 1 and 3, theRac value was found to be -8,200.
Under the same conditions of T, and T2, based on Figure 6, Rac is found to be -8,150. For the case of
melting from above (i.e., for the case T1 = 00 ), and T2 = 10.50C, based on eq 12a and 13a, the values
of X, = 1.644 and X2 = 0.300 were obtained with the aid of Figures I and 3, Ra c is found to be Rac =
48,200, which compares remarkably well with Rac = 47,520 estimated from Figure 6. It is clear that
regardless of how you define the Rayleigh number (as long as done appropriately), the equations
will provide the same Ra c for the same thermal boundary conditions.

Legros et al. (1974) were the first ones to investigate systematically the effect ofthe ratio d/h (where
d is total layer depth, h is height of the unstable layer) on the onset of convection of a water layer with

Table 1. Summary of experimental parameters and calculated results
(after Legros et al. 1974).

T2  d h d-h ATce T2  d d-h AT,,
(0C) (MM) (mM) (mM) dlh (0C) (0C) (mm) (mm) (0C)

0.54 4.67 3.17 1.50 1.47 10.80 4.32 4.67 -0.23 6.62

0.86 4.67 3.27 1.40 1.42 10.46 5.18 4.67 -0.96 5.75

1.31 4.67 3.39 1.28 1.38 9.84 6.51 4.67 -2.47 4.75

1.67 4.67 3.51 1.16 1.33 9.40 9.05 4.67 -6.94 3.40

2.17 4.67 3.70 0.97 1.27 8.80 13.33 4.67 -19.90 2.19

2.56 4.67 3.85 0.82 1.21 8.24 16.84 4.67 -34.66 1.73

3.40 4.67 4.29 0.38 1.09 7.38 20.16 4.67 -55.90 1.35

8



a maximum density as a function of the upper boundary temperature (i.e., T2). In their experiment, T2
was varied from 0.540 to 20.16°C, and the layer depth was fixed at 0.467 cm. The critical temperature
difference (ATce) was determined by observing the temperature difference as a function of heat flux.
Table 1 is a summary of their results.

In Table 1, d-h = dIATce (4 - T2), (i.e., the stable layer depth just prior to onset of convection). For
T2 > 49C, the measured ATce values were compared with the analytical ATct values calculated from the
classical critical Rayleigh number, i.e.,

-gATct d' = 1708 (14)
va

or

ATct- =(1708) (va) (15)

g3 d'

The 13 value was evaluated from a sixth-order polynomial: i.e.,

p = aT6 + bT 5 + CT 4 + dT3 + eT 2 + fT +g,

where a = 8.2270200xloyl 3,
b = 6.8247601x10 1 1 ,
c = 2.9114740x10- 9,
d = 1.2488637x10- 7 ,
e = -9.2582184x10 -6,

f = 6.8355321x10-5,
g = 9.9984055x1 -I,

and was found to be in excellent agreement. The difference AT, - ATct becomes greater when T2 --
4*C, as expected. For the experiments of T2 < 4*C, the results were compared using an analogy
pointedout by Veronis (1963) and Debler( 1966) between the eigenvaluesforthe Benardproblem with
a maximum density and for the stability of viscous flow between two cylinders rotating at almost the
same angular velocity. This is shown in Figure 8 along with the work reported by Yen (1980) from
melting ice studies. Yen's data not only agree extremely well with those of Veronis (1963) and Legros

13- Melting from.
(°

) Above

12 _ (•) Below

Results of:
IIF (a) Veronis (1963)

(o) Legros et al. (1974)
-10-

N 9

7-

Figure 8. Comparison of Tat2(l-i x4 and RaI 50 2 3

2Ahe w X (after Yen 1980).
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et al. (1974) but the data extended Legros et al.'s range of X from about 1.5 to 3.5. In this figure, the
value of Rac is evaluated from

Rac - gy (AT)2 h3  (16)
va

wherey is obtained from eq 2 and has a value of 7.68xl0-6°C-2 with Pm = 0.999973 g/cm 3, and v and
ca are evaluated at (T1+T2)/2. In Yen's melting ice work, AT= 40C and h = 4T 2 (d) for melting above
and AT = T, - 40C and hc = [(TI - 4)/T I ] dc for melting from below, where dc is the total layer depth
at the onset of convection.

In a melt layer with a free surface
Seki et al. (1977) performed an experimental and analytical study on the thermal instability program

arising from a horizontal layer of ice heated from above under constant radiant heat flux. Two cases
were considered, as indicated in Figure 9. In the case of (a), the fluid density in the layer increases at
first downward from the free surface and then decreases (equivalent to melting from above with
constant upper boundary T2 = constant). Therefore, the fluid layer consists of potentially stable and
unstable layers. On the other hand, in the case of (b), the entire layer is unstable. In the case of (a), the
hydrodynamic boundary conditions, including surface tension and the thermal boundary conditions,
are only felt indirectly by the potentially unstable layer. If the thickness of the stable layer decreases
relative to that of the unstable one, it is obvious that these effects would become more significant. In
case of (b), these effects are felt directly by the potentially unstable layer. The problem, which
incorporates a maximum density and an upper free surface, differs distinctly from other instability
problems.

In Seki et al.'s (1977) analysis, linear perturbation techniques are used to derive a a sixth-order
differential equation and the series-solution method is utilized to obtain an eigenvalue equation for
the case where the lower surface is kept at 0°C and the upper free surface is subjected to temperatures
ranging from 1.5' to 12'C. Figure 10 shows the variation of the critical Rayleigh number Rac with T2
for Ma = 0 (Ma is the Marangoni number). Two solid lines were shown. One for Bi = 0 (Biot number
= hHIK) corresponds to a fixed heat flux and the other for Bi = - to a fixed temperature at the free
surface. Also shown are the results of Sun et al. (1969). It appears that Rac values increase with T2.
However, the two curves intersect each other at -6.2*C, and the reason for this occurrence is still not
understood. (This phenomenon was also observed in Sun et al.'s study; see Fig. 1.) The effect of Bi
on Rac is demonstrated through the plot of Ra/(Rac)i--o vs Bi for various T2 for Ma--O (see Fig. I1).
It is clear that the effect is greatest for fixed surface temperature and smallest for fixed heat flux. But
the sensitivity to Bi varies considerably; it decreases with increasing T2, indicating that the effect

Free Surface T2 > 40C Free Surface T2 < 40C

Stable Layer

H --- ..... Tm 4 *C H Unstable Layer

h unstable Layer

qZ1 OC = 00, x\ Ice Layer -y\' l'eL er,." I.. .,. .. .. x l o °

a b

Figure 9. Illustration of the effect of maximum density in a melted
water layer (after Seki et al. 1977).
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Figure 10. Critical Rayleigh number asfunction ofT 2 (Seki et
al. 1977).
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Figure 11. RaV(Rac) 8=o vs Bi in the case ofMa= 0 (Seki etal. 1977).

becomes less significant as the thickness of the stable layer increases. The effect of Ma on the ratio of
Racl(Ra)Ma .o vs Ma for various Bi values and T2 = 4*C is shown in Figure 12. Clearly the effect of
thermal boundary condition at the free surface on the onset of free convection fora given Ma is great-
est for Bi = 0 and smallest for Bi = -.

The dependence of Racl(Rac)Ma=O on Ma is shown in Figure 13 with Bi = 0 and various T2 values.
Rag1(Rac)Ma=O increases monotonically with increasing Ma and is most sensitive to Ma in the range
of 100-1000. The value ofT2 markedly influences the effect of Ma on Rac. For T2 > 4*C, the thickness
of the potentially stable layer in the melted water layer increases as T2 increases; therefore, the thermal

Il



T2ofT 2 =4°C (Sekiet a!. 1977).

Bi.0.O

MON.'c

1.0

100 Figure 13. Ra/(Rac)Ma..=ovs Ma in the case

Ma of Bi = 0 (Seki et al. 1977).

boundary condition of the free surface becomes less significant as T2 increases and the effect of Ma
on Ra c is reduced. However, the effect of Ma on Ra € still can be evaluated even at T2 > 40C. This
behavior may be attributed to the upward penetration of the free convective motion in the unstable
layer exceeding the 40C isotherm. Figure 14 shows the comparison of experimental and analytical
results, in which Seki et al. (1 977) evaluated the Rac value based on

Rac = g13 (TinTI)h3 vcc (17)

for T2 > 40C and

Ra = g (T2 - T1 )H 3  (18)

12
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Figure 14. Comparison of experimental and analytical results (Seki et a.
1977).

for T2 
< 4C. 0, v, and a are evaluated at 2°C in eq 17 and evaluated at the arithmetic mean tem-

perature in eq 18. It can be concluded that for T2 < 8C, Rac - 500 agreed extremely well with the
experimental results of Sun et al. (1969).

In a melt layer between vertical plates
The only analytical and experimental work dealing with the onset of convection of a vertical water

layer formed by melting ice was reported by Hassab and Sorour (1982). Their problem deals with
the melting of an ice layer that is confined inside a vertical slender slot as shown in Figure 15.
Initially the ice is at its melting temperature (i.e., T = 00C) at t = 0, then the left side is suddenly
increased to a constant temperature T1 > 00 C and maintained at that value throughout the entire
experiment. When the melt layer is thin, the heat is transferred by conduction (except at the ends)
and consequently a laminar parallel flow will be developed as a result of ice density difference in
the fluid. As the melt layer thickness gradually increases with time, the initial laminar motion breaks
up, and secondary flow appears in the form of either stationary horizontal cells or traveling waves.

The stability problem was solved by the application of the Galerkin method, and the stability
criteria of this system are established by determining its eigenvalue, C, = Cr+ iCi (where Ci = wave
speed, n = 1, 2...N). That is, for a given choice of the system parameter TI, there are at least two
minimum values of Gr (Grashof number) with respect to a wave number (2ri/, where X is the
wavelength) for either the real part of the least eigenvalue Cr = 0, Ci * 0, in the case of traveling
waves, or for both components Cr= Ci = 0 in the case of stationary cells. Figure 16 shows the critical
Grashof number along with the modified Grashof number Gr, as a function of T1. The values of Gr c

and Grc are defined respectively as

13
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Gr, - gyI T, h3/v 2  (19)

and

- 00 gTjh' (20)
V 
2

in which PO is evaluated from eq 4 as

Po0 =O = (2yI = 37 2Tm) Tm. (21)
PO dT T=O

Substituting values of y1 = 0.793953x 10-5°C -2, y2 = -0.6559x 10-70C -3 and Tm = 40C, the ratio of eq

20 to 19 can be expressed as

Grc = 8.3965 Grc/TI. (22)

As shown in Figure 16, the Gr curves approach an asymptotic value of 1300 for T, > 26'C and, as in
horizontally confined melt layers, the critical Grashof number is no longer a constant but varies with
T1. However, this result would not provide insight into the value of T1 at which the instability is
enhanced or delayed. This uncertainty is due to the dependence of Gr upon both T, and the melt layer
thickness h(t). It is therefore more appropriate to recast the stability results in terms of critical melt layer
thickness he and critical melting time t, which are derived from the critical Grashof number. The
critical melt layer thickness and critical melting time are defined as

h, v 2 Grc2(23)
V ^ I gT2

and

tc= h2 (24)
4S 2 oC

Figure 17 shows the variation of he and tc as a function of T,. The graph can be classified into three
regions as follows:

1. In the region when T, < 4C, the density profile has no maximum ,alue; increasing T,
increases the density difference across the melt layer, accordingly destabilizing the flow.
When T, > 4°C, the melt layer has a maximum density, but increasing T i has a smaller
destabilizing rate, although the instability sets in earlier owing to the higher temperature
difference across the melt layer.

2. In the region for 7.1 0 C 5 T1 < 9.40 C, the variations of h. and tc are not monotonous for in-
creased T1. This trend may be due to the transition in the wave structure from two-column
waves for T, < 7.1 °C to three column waves for 7.1 °C -<T, _ 9.40 C and back as two-column
waves for T, > 9.40 C.

3. In the region for T, > 9.40 C, increasing TI has a significant destabilizing effect because of
the strong bending of the density profile resulting from the pronounced increase of the
density difference.

Figures 18a and b show the dimensionless mean base flow velocity across the melt layer thickness.
Figure 18a shows the U distribution in regions I and III. In region I, a unicellular motion forms so that
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Figure 17. Critical melting thickness, hc and melting time, tc as function of step-wall temperature T,
(Hassab and Sorour 1982).

the fluid near the hot wall descends and near the interface ascends. An opposite unicellular motion
occurs in region In because the water near the interface is denser than that near the hot wall. However,
in region III (Fig. 1 8b), the fluid at the central part is denser than that next to the boundaries. Therefore,
two parallel cells form, with the fluid at the central part moving downwards and that adjacent to the
voundaries moving upwards. Figure 19 shows the variation of average volumetric expansion 13 as a
function of T1 and sheds some light on the magnitude of U in regions I and III. When T1 < 8.20C, 13
decreases with increases ofT,; for T1 > 8.20C, 13 increases with increasing T1.Since the shear flow
is driven by the buoyancy effects that are linearly dependent upon 1, increasing T, will suppress the
dimensionless base flow U in region I while expanding it in region I[. (See Fig. 18a to compare U
curves for TI = 40 and 6*C, and for T1 = 120 and 20 0C.)

The stability problem of natural convection in a vertical melt layer can be classified in terms of the
boundary temperature T, into three regions:

1. For T1 < 7.1 0C, stability sets in as two-column waves travel opposite in the vertical direction.
Although heating increases Gr it is actually destabilizing the flow with a decreasing rate.

2. For temperature range 7. 10 < T, < 9.40C, instability occurs as three-column waves. Minimum
wavelength and minimum wave speed occur at 8C and maximum values of Grc occur at T,
= 7.30 and 9.2 0C, respectively. In this region heating also destabilizes the flow.

3. For T, > 9.4*C, the instability recurs as two column waves, with both wave speed and
wavelength increasing (see Fig. 20 and 21) as Ti increases. Again, heating has a destabilizing
effect on the flow.
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EFFECT OF 40C ON HEAT TRANSFER
IN PURE WATER AND ICE-WATER SYSTEMS

In a vertical enclosure
The vast majority of the natural convection studies reported so far pertain to fluids whose density

decreases or increases monotonically with the temperature at a constant pressure. However, for liquids
such as water, the density-temperature curve exhibits a maximum value. Since the coefficient of
thermal expansion changes sign through the maximum, the use of linear approximation of density to
model water is inappropriate in the range of temperature that corresponds to the density maximum.
Lankford and Bejan (1986) were the first to investigate the natural convection in a vertical enclosure
filled with water near 40C. Two series of experimental runs were reported: one set for TH (hot-wall)
and T, (cold-wall) temperatures well above Tm (temperature corresponding to maximum density), and
one set for TH and Tc embracing Tm.

Figures 22 and 23 show typical wall temperature distributions as a function of dimensionless height
y/H and their corresponding flow patterns. When the temperature everywhere in the enclosure is well
above 4°C the wall temperature increases almost linearly with height and, at each level, the wall-to-
wall temperature difference is practically constant (Fig. 22). In experiments where the entire enclosure
is below 4"C, the water density consistently increases upon heating. The wall temperature distribution
in such a case is similar to that shown in Figure 22 except that the temperature of both walls decreases
with height.

When the enclosure temperature range includes 4*C and when the average enclosure temperature
is slightly less than 40C, the sinking core jet emerges from near the top of the warm wall, and along
the cold wall the water jet rises all the way to the top as it is cooled to a temperature close to 0*C. The
same jet turns around at the top of the enclosure and descends along the warm wall, because its density
increases as its temperature increases from 00 to 4°C.
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When the average enclosure temperature is slightly above 4°C the sinking core jet emerges from a

point near the top of the cold wall. Along the warm wall, which is swept by a jet whose density

decreases monotonically with temperature, the temperature distribution has the same features as those

in an enclosure heated with uniform heat flux from the side and filled with fluid whose density

conforms to the linear density-temperature. Along the cold wall, however, the collision of the two

counterflowing jets is felt as a sharp change in vertical temperature gradient near the level of collision

(see Fig. 23).
Figure 24 shows the experimental results for the case of an average water temperature well above

4C along with empirical correlations recommended for the cases of isothermal walls and constant-

heat-flux-walls. In this case, the heat transfer data can be well represented by

Nu = 0.203 Ra 028 (25)

in which

Nu = Q (26)
Wk(Th-T_)

and

RaH = 3 (27)

where Q = the overall heat transfer rate,

W the enclosure width,

TH the height,

-c height-averaged wall temperatures.
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Figure 24. Correlation of heat transfer results in water at temperatures above 4 OC (Lankford

and Bejan 1986).
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The physical properties k, a, 13, and v were evaluated at the average enclosure temperature defined as

Tavg -1(f. 1 + Tj(28)
2

The experimental results are found to agree well with the isothermal wall correlation reported by Bejan

(1979), i.e.,

Nu = 0.364 Ra 1. (29)

However, the slope of the empirical correlation of eq 25 is nearly identical to that of eq 30 reported

by Kimura and Bejan (1984) for the case of constant-heat-flux wall, i.e.,

(U'/1 / 7 RaN7  (0

Nu = 0.25 _ (30)

Figure 25, a plot of Nu/RaH0 '28 vs Tc, shows clearly how these correlation methods deteriorate

as temperatures approach 4"C. The maximum density flow pattern inhibits the transfer of heat,

causing a decrease in Nusselt number that was not accounted for in the development of eq 25. Even

in the range of temperatures immediately above 4"C, where the density maximum has not neces-
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sarily been crossed, the data still tend to deviate from the constant value assumed by eq 25 (see the
dotted line in Fig. 25). This is because the coefficient of thermal expansion 1P used in the linear
density-temperature approximation (i.e., p = po [ 1--4(T-To)] where p0 and TO are the reference density
and temperature, respectively), changes so rapidly near 4°C that averaging it in the normal fashion
leads to significant errors.

To overcome this difficulty, Lankford and Bejan (1986) adopted the technique of scale analysis by
considering the boundary layer regime for natural convection in near 40(2 water. Figure 26 shows the
case where the side-wall temperatures occur symmetrically above and below 40C. It shows that the
maximum density sinking jet originates from near the top of the enclosure. The convection pattern
consists of two boundary jets rising along the differentially heated side walls, and a maximum density
sinking core with Tm- 4*C. Thermal boundary thickness SH and Sc can be scaled from the classical
case for fluid with Pr> 1 (Bejan 1984), i.e.,

6 H H( g H 3 Ap/p) 1 4  (31)

Expressing Ap/p = y(T -Tm) 2 (from eq 2), eq. 31 becomes

8H - H g YH3 (T - Tm)2 )- /4  (32)

Similarly for the cold-side boundary layer we have

Hc H(gYH 3 (Tm- Tc)2 ) I 4

8= H.y3(T . (33)

The quantity in the square brackets in eq 32 and 33 is the Rayleigh number for fluids with parabolic
density variation near the density maximum.
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The scale of overall heat transfer rate from Ti, to Tc can be written as

Q ~ TH-T; (34)
Rn+ Rc

where RH - 8H/kHW and R, - 8/kH1W. From eq 32 and 33, eq 34 can be expressed as

Nu - C 1  (35)
RajH + t,2tRare

where

Ra = gH 3 (TH- T) 2  R gYH 3 (Tm- T) 2

O v Raw- V(X (36)

Figure 27 shows an excellent correlation of the heat transfer results of water at near 40 C with eq
35 derived from scale analysis. The solid line drawn through the experimental points is a plot of eq
35 with assumed values ofC I = 0.31 and C2 = 0.5. These constants were chosen such that the standard
deviation between eq 35 and the measurements was minimized when summed over all the
experimental points.

In a vertical annulus
Lin and Nansteel (1987b) were the first to investigate systematically the effect of curvature and

aspect ratio on the flow structure and heat transfer in a vertical annulus. Figure 28 shows the vertical
annulus, coordinate system and thermal boundary conditions. Lin and Nansteel ( 1987b) assumed that
the flow in the gap is laminar and axisymmetric, and all fluid properties are constant except for density
in the buoyancy term of the vertical momentum balance. They introduced dimensionless variables
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R=r-5, Z=-L, U=Y, V-=D
D D Vc Vc

vc -ct p= pD2 0 =T - TcDD 2 2__

PcV' Th-Tc

and represented the density-temperature relation as

p = p, [1 - aIIT- Trq]. (37)

The governing equations for conservation of mass, momentum and energy in the annulus are given as

au:+ av+ (K-1) U=o (38)
aR az (K-1)R+I

DU P + 2 U (K- 1) au + a2u [(K- ) 2L _ + U (39)
Dt aR aR 2  (K-I)R +l R aZ2  (K-l1) R + Ij

DV = P + Ra. [10- R I - R ' lq] + hV- + (K-1) aV + a2 v (40)

Dt az Pr aR2  (K-I)R + I aR az 2
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&9- l [20 + (K-I) Do + DI (41)Dt pr [aR2  (K-I)R+ 1 R TZ 2J

where U = V=0 on the boundary
0(0,Z,) = 1,0(1,Z)=0

e0 (R, 0) L Oe (R, A)= 0.

K = the ratio of ro/r, which characterizes the degree of curvature,
Pr = the Prandtl number, vr/cll
A = the aspect ratio HID.

The Rayleigh number is defined as

Ra' = Gpm a (Th- Tc)qD' (42)
Pc VC atc

and the density distribution parameter as

R' - Tm - Tc (43)
Th- Tc

which fixes the orientation of the maximum density temperature with respect to the wall temperatures
Th and Tc. For example, R'= 1/2 corresponds to the circumstance in which the hot and cold wall
temperatures perfectly straddle the maximum density temperature for 0< R'< 1, (i.e., Th > Tin) and
the water density in the annulus increases with increasing temperature to a maximum p = Pm aT =
Tm and then decreases with any further increase in temperature. On the other hand R'= 0 corresponds
to the case in which the cold wall is at temperature Tm so that fluid density decreases monotonically
with temperature everywhere in the annulus. For R'= 0, flow in the annulus is similar to the flow of
a Boussinesq fluid, but only in a qualitative sense since density is a nonlinear function of temperature.
When R'-- 1, Th =Tmthe density increases monotonically with temperature everywhere in the annulus.

Eliminating P in eq 30 and 40 and introducing the dimensionless vorticity

av au
aR aZ

and stream function I

U = (K- 1) a, V (K-) 

(K-I)R+I I Z (K-I)R+l aR

we have

Lt(K-I) U - q 10 -R' - 2 (0 R')ao +alt
DT (K-I)R +I Pr D!? aR.2

+ 24 + (K-l I j& (K_. I )12 (4

az2  (K-l)R+l aR (K-1) R+l (44)
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with

I 2 + a2(K-l1) 2y(5
(K-1)R+1 aR2  aZ 2  (K-1)R+I aR "

The Nusselt numbers at the inner and outer walls can be expressed as

Nu i _ q - (o, Z) dZ (46)
k (Th- T) A a,

and

Nu, -q01 ID (1,Z) dZ. (47)
k (Th -Tc) A J- (1,

Nui is related to Nu. by

Nui = K Nu,. (48)

Numerical results were obtained by solving eq 41 and 45 with the finite difference method. Figure
29 shows the effect of R' on flow structure and temperature distribution for the case of A=1 (aspect
ratio) and K=I (no curvature effect) and Ra'= 105 . In Figure 29a, R '= 0.4, the two counterrotating
cells are separated roughly by the maximum density isotherm 0 = R'= 0.4. In Figure 29b, the
relatively light fluid rises adjacent to the heated and cooled walls, while dense fluid p = p., T = Tm
falls near the enclosure vertical midplane in a symmetric dual-cell pattern. As R'increases, the
counterclockwise rotating cell has grown substantially in size and strength at the expense of the
clockwise rotating cell. In the case of R'= 1, the density increases with temperature everywhere,
resulting in a single counterclockwise vortex. This flow pattern is qualitatively similar to the
convection of a Boussinesq fluid except for the direction of circulation.

- 70

- 70

40 _

a. R' =0.4.

Figure 29. Stream function (i x 103) and temperature (0 = 0(0.1)1) contours for A = 1, K =
1, and Ra'= 100 (Lin and Nansteel 1987b).
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Figure 29 (cont'd). Stream function (lyX JO) and temperature (0=0(0.1)1) contours for
A = 1, K = 1, and Ra'= 105 (Lin and Nansteel 1987b).
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Figure 30 shows the effect of Kon flow structure and temperature contours forA = 1, Ra'= 105, and
R '=0.4. As indicated in eq 46, the average heat flux at the inner walls is K times larger than the average
heat flux at the outer wall under steady conditions. As a result, with increasing K, isotherms will become
increasingly crowded near the inner cylinder. As the maximum density water shifts toward the inner
cylinder, so does the line of demarcation between the outer counterclockwise-rotating cell and the
inner clockwise-rotating cell. Thus for fixed R, the outer cell strengthens and the inner cell weakens
with increasing curvature of the annulus (i.e., as K increases).

Figure 31 shows the effect of A on W and 0 for the case of K = 2, R'"= 1/2 and Ra'= 104 . Clearly,
increasing A tends to increase the convective intensity of the outer cell. This is because the quenching
effect of the unheated horizontal surfaces lessens as A is increased and the temperature field becomes
dominated by conduction over much of the vertical span of the annulus whenA >4. Only near the top
of the annulus, where the counterclockwise outer cell sweeps cool fluid from the outer wall onto the
heated inner wall, does the contribution of convection become significant. This phenomenon is not

-9 57

228
18

281
27

80

-00

Figure 31. Effect of A on distribution of stream function (Nix 10&1 temperature contour (0
= O(0.1)J)for R' = O.S, K = 2 and Ra= 1O (Lin andNanstee11987b).
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Figure 31 (cont'd).

observed near the bottom of the annulus space because of the existence of a dual-cell structure, which
prevents the contact between the inner cell and outer, cooled wall.

Heat transfer
Figure 32 shows the variation of Nui with K (K = ro/r i) for the case R'= 0.4, A = I and a range of

103 5 Ra' < 1 05. In this particular condition, there is a transition from inner to outer cell dominance
as curvature (i.e., as K) increases. This occurs in the range of2 <:K 5 5 for 103: <Ra'< !105. The smooth
transition takes place from a case where the inner cell wets both walls to one in which the outer cell
wets both walls. Over much of this range of K, the cells are of roughly equal strength and the inner cell
is effectively insulated from the outer wall by the outer cell and vice versa. This in turn leads to a
diminished rate of convective heat transfer from the inner to the outer wall. The result is a minimum
heat transfer rate near K - 3.5, but only a minimum rate of increase of Nui with K, since conduction
heat transfer increases quite rapidly with increasing K. The curve for Ra'= 103 shows no point of
inflection because the contribution of convection toNui is rather small. The variation of (Nui)COndcan
be related to K by

(Nui)cond = K-I (49)
In K

The value of (Nui)cond is, in general, not in unity as it is in the case of K = I (rectangular enclosure).
The effect of K and Ra'on Nui is easily observed by plotting Nu1/(Nui)cond vs K as it is shown in Figure
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33. This figure shows the convective contribution to the decrease of heat transfer with increasing K
for K < 3.5 and then the increase for larger K (behavior that is a direct consequence of the transition
from inner to outer cell dominance). For large values of K, the ratio again decreases gradually since
conduction heat transfer grows without bound while convective heat transfer is bounded. Conse-
quently, all the curves will approach a value of unity asymptotically as K -- **.

Between horizontal concentric cylinders
Seki et al. (1975) reported their pioneer work on natural convection heat transfer between horizontal

concentric cylinders of water near its maximum density. In their study the ratio of outer to inner
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diameter (dA1d i) ranged from 1.18 to 6.39 with d values of 19.0,38.0,55.4,69.6 and 99.7 mu and do

of 65.5 and 121.5 mm., and the gap width L [= (do-di)/2] was varied from 5.0 to 51.2 mm. The surface
temperature of the inner cylinder was kept at 0 C, whereas the outer cylinder surface was varied from
1 to 15C. For each geometrical configuration, two sets of data were obtained (i.e., one set for To <
40, and the other set for To > 4°C).

Flow patterns
Figures 34 a, b, c, and d show a series of photographs and schematic views of flow patterns with the

same do = 121.5 mm but with increasing di values of 38.0 to 55.4, 69.6 and 99.7 mm (i.e., with d/d i

f/

a. di =38.0 mm, To =49C.

b. d, = 55.4 mm, To = S0C.

Figure 34. Photographs and schematic views offlowpatternsfor d, = 121.5 mm (Seki et al. 1975).
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c. di = 69.6 mm, To = 6C.

d. di =99.7mm, To= 4 C.

Figure 34 (cont't). Photographs and schematic views offlowpatternsfor do = 121.5 mm (Seki et al.
1975).

ranging from 3.2 to 1.22 and L varying from 41.7 to 10.9). The temperature of To increased from 40 C
in Figure 34a, to T, = 5°C in Figure 34b, and T, = 60 in Figure 34c; however, To = 4C in Figure 34d,
as in Figure 34a. In Figure 34a, the flow patterns are stable, with the eddy moving upward along the
inner cylinder and downward along the outer cylinder. The water near the upper part of the vertical
axis flows at higher speed than that on the other part in the gap. The center of the eddy is clearly
observed in the upper part of the annuli, while in the lowerpart a secondary counter-eddy can be seen.
For To = 5°C and dold i = 2.19 (Fig. 34b), the secondary counter-eddy in the lower part can be seen more
clearly. When To ranges from 6° to 7°C, the influence of density inversion at 41C becomes more evident.
The eddy becomes large and finally two counter-eddies of almost equal strength exist in the gap (Fig.
34c). Flow patterns for L = 10.9 mm and djd i = 1.22 with To = 4C (Fig. 34d) are considerably
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Figure 35. Photograph and sche-
maticviewfordo =65.5mm,dj= 19.0
mm and T o = 8°C (Seki et al. 1975).

different from those in Figure 34a-c. A very small eddy that flows downward along the vertical axis
is observed in the vicinity of the top annuli for all To . This is believed to be due to the effect of L
and the cylinder curvature. Figure 35 shows the case of do = 65.5 mm, di = 19.00 mm (do/d i = 3.44),
L = 23.2 and To = 8°C. Here the eddy is flowing upward along the outer cylinder and gradually
extending its size, while the one moving upward along the inner cylinder becomes smaller and
finally disappears as To increases.

Temperature distribution and local Nusselt number
Figures 36a-38a show the effect ofT o n the dimensionless temperature distribution 0 as a function

of the dimensionless radiusR. The corresponding local Nusselt numberNuioc as a function of angular
position (measured from the upper vertical axis) is shown in Figures 36b-38b. The local Nuloc is defined
as

Nu 10c - qL (50)
KAT

where q is a local heat flux. Different means were used to evaluate this quantity to determine the local
Nusselt number for the inner cylinder (Nujoc,) and outer cylinder (Nu1oc,o). In Figure 36a, a tem-
perature inversion is observed in the range from 0 to 900, which is reduced as angular position in-
creases. In the 160-1800 range, little convective flow occurs. Figure 36b shows a minimum Nu at 00
on the inner cylinder and 1800 on the outer cylinder. This phenomenon fits well with the observed
temperature distribution in Figure 36a. Figure 37b shows the case of To = 60C, where two standing
eddies of almost the same size coexist. The Nu1 0C'o has its lowest value at around 900 angular position,
while the increase ofNuloc, i with increasing angular position is minimal at 0F and highest at 1800. Figure
38a is the case when To = 80C; here the temperature at 00 angular position is the highest one in the gap
between the cylinders and it decreases as the angularposition increases. In the range ofangularposition
from 00 to 300, temperature is much higher than those in either angular positions and it implies that
there is a stagnant region where the conduction heat transfer is dominant. The local Nusselt number
for the outer cylinder decreases as the angular position decreases and reaches a minimum value at 00.
On the other hand, the Nuloc,i values decreases gradually from 900 to 1800, while between 900 to 00
it increases significantly and reaches a maximum at 00 (See Fig. 38b). Figure 39 shows the variations
of average Nusselt number Nu (based on inner diameter) with AT(= T.). The Nu is defined as
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Figure 36. Temperature profiles and local Nusselt numbers for do/
di = 3.20 and To = 40 C (Seki et al. 1975).

Nu QtL (5)

xt4 A Tk

where Q, is total heat transfer rate per unit length of the cylinder. Figure 39 shows that Nu does not
increase monotonically with increasing AT(as is common in fluids) when a single large e_dy occupies
the major portion of the gap, as in the case of T,:5 4"C or To 0 9"C. The peak value of Nu is found at
-4'C and the minimum values appear between approximately 6* and 7"C. Values of Nu, including
minimum Nu values, generally increase with increasing gap width L.

36



1.0 1

0.8-

0.4- 600

O.30'

0 0.2 0.4 0.6 0.8 1.0R

a. Temperature profiles.

Pure conduction

Nuloc, o  \ 8' " '

;806

b. Local Nusselt numbers.

Figure 37. Temperature profiles and local Nusselt numbers for dod / =

1.75, and T, = 60C (Seki et al. 1975).

Nguyen et al. (1982) were the first to conduct an analytical study on the natural convection of cold
water between two horizontal concentric cylinders with constant surface temperatures at low
Rayleigh numbers. The governing equations were solved by the perturbation method and the
solutions of dimensionless temperature 0' and stream function -W were expressed as a power series
of the nonlinear Rayleigh number Ra. as
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Figure 38. Temperature profiles and local Nusselt numbers for
d0/d, = 3.44 and To 80C (Seki ef al. 1975).

0' = Ra'-' O' (52)
M=I

m= I
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Figure39. Variationof Nu with AT(orTo) (Seki etal. 1975).

where 0' is defined as (T-To)f(Ti-To), and Ran is defined as

Ran = g 2ri3(T-To) 2/Va

in which 02 is the volumetric coefficient of expansion of the following density-temperature relation

p = pr[I - 1(T- TI) - P2(T- TrY ]  (54)

where Tr and Pr are the reference temperature and density respectively. 131 is related to 0 2 by

P= 2 (Tr-Tm) 2

with 2= 8x0"O6C-2 and Tm = 3.98*C.
Although the disadvantage of eq 54 is its limited use for the range of temperatures from 0° to 8°C,

an advantage is that this equation can predict all the essential features associated with an inversion of
density by introducing just one more parameter than the equation for a classical normal fluid. Figures

40a-40c show the effect of inversion parameter y defined as 0 /0 2(Ti-To) or -2 (Tm-To)I(Ti-To) on

flow patterns and isotherms in which the increments between adjacent isotherms and streamlines are,

respectively,

Ao = - 0o) = 0.2
5

and
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a. "=0 and max = 4.6.

b. Y'= -1, max = -0.045 and in =-0.71. c. '=-2 and -mn 4.8.

Figure 40. Streamlines and isotherms for Ran = 2000, R" = 2 (after Nguyen et al. 1982).

Aij =(1i-mI + %V i 5,

"-max and n being the values of the stream functions at the centers of the clockwise and counter-
clockwise vortices, respectively.

Figure 40a shows the case when the density maximum is situated at the outercylinder (i.e., y' = o).
The flow consisted of two symmetrical counterrotating vortices with a downward motion near the
outer cylinder. The resulting flow pattern is of a tadpole shape lying in the upper part of the annulus
where the fluid motion is strongest. The maximum heat transfer occurs, however, both at the top of
the outer cylinder and at the bottom of the inner cylinder. Since there is no density inversion in this
case, the flow is similar to that observed in an ordinary fluid.
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Figure 40b is the case of complete inversion with y' = -1. The heavy dashed line represents the
4'C isotherm corresponding to the region of maximum density. In the neighborhood of this region,
the fluid moves downward, while near both the inner and outer cylinders the fluid moves upward.
The effect of the inversion is the sharp decrease in heat transfer as indicated by the almost concentric
isotherms in contrast with the rather distorted patterns shown in Figure 40a. Figure 40c is the case
of y' = -2, (i.e., when the maximum density is situated at the inner cylinder) where the flow and
isotherm patterns are just opposite to those observed in Figure 40a.

Figure 41 a shows the angular velocity profiles at 0 = 90* for Ran = 8000, R" = 2 withy 'as a function
of (rhri- 1). Figure 41 b provides the variation of angular velocity as a function of angular position.

The effect of Ran on the flow and isotherms pattern can be seen by comparing Figures 42a and 40b.
By increasing Ra n, the innercell is pusheddown while the outerone moves up and gradually changes
from the well- known kidney shape to that of a tadpole. The heat convection is.enhanced in such a
way that the isotherms are squeezed to the top of the inner cylinder and to the bottom of the outer
one. The effects of changing radius ratio [R'= (roIri)] on the inversion phenomenon can be seen from
Figures 42a and 42c or 42b and 42d.

An average or overall Nusselt number can be defined as

Nu =1 + Ra(55)

-16

-4

12-

I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a. = 90 with y'as a parameter.

Figure 41. Angular velocity profiles for Ra,, = 8000 and R" 2 (Nguyen et al. 1982).
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b.Y' = -J at various angular positions.

Figure 41 (con'd). Angular velocity profiles for Ra,, = 8000 and R" = 2 (Nguyen et al. 1982).

a. R" =2, I'= -, *la = 1.1 and '.mi = =-2.7. b. R" =2,-' = -.857, wa = 1-5 and in =-J.4.

Figure 42. Streamlines and isothermals for Ra,1 = 8000 (Nguyen et al. 1982).
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c.R" = 1.2,'=-lmax=O.0087,and1.in =-O.013. d. R= 2.6,y' = 0.857, m=3.2andin = -6.7.

Figure 42 (cont'd).

where Ra 0 is the Rayleigh number based on gap width (ro-ri), i.e.,

RaG = g2(ro-ri)(T1-T)/v

where P2 = 3x i0-6 oC- 2 and £ is a function of R" and '. Equation 55 explicitly shows that the overall
Nusselt number is made of two terms, the first term representing heat transfer due to pure conduction
and the second arising from heat transfer by convection. Figure 43 shows the effects of density
inversion, for R" values ranging from R" = 1.25 to iW, on the overall convective heat transfer
coefficient c = (Nu-I)IRaG2. All three curves present a very sharp minimum in the vicinity of y' =
-1, indicating a deep cut of the heat transfer rate due to the complete inversion of fluid density. For
example, the minimum value of e at y' = -I is about 103 times smaller than the value of e at y' =

-2. This steep drop is essentially due to the presence of two counterrotating vortices that arise from
the inversion of the fluid density.

Vasseur et al. (1983) extended Nguyen et al.'s (1982) and Seki et al.'s (1975) experimental work

by conducting an analytical study of the same problem. Vasseur et al. (1983) assumed symmetry
along the vertical plane through the axis, neglecting the viscous dissipation and compressibility
effects. All fluid properties except the water density were taken to be constant and evaluated at the
arithmetic mean temperature of the two cylinders. The governing equations for the present problem,
using the Oberback-Boussinesq approximation, are

+ _ D [(UR... = + 1
R" ,, 

= PrV2 + A sin ,, + co - A (56)

___.-! ____... (vofl.
D+ I (UR") a (O =V2(57)

SR.' . +R-

= V2 W (58)
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Figure 43. Coefficient of convective heat transfer , as function of Y' and R" (Nguyen et al.
1982).

U- aN, V (59)
R '"

The initial and boundary conditions are

U=V=W=Q =0; 0=0,at x=O

U=V=W=0; 0=0,0< O<n,R' = R" (60)

U=V=MI=O; 0=1,0< O<R,R" = R"
R"P - I

a.-U - V = W = Q ; = 0 - 0 at =0, n (symmetry lines)

where Q = dimensionless vorticity, woO/a
co = the vorticity
L = the gap width (ro-r1)
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R"' = dimensionless radial coordinate, r/L
U, V = dimensionless radial and angular velocity, uL/ot and vL/at
u, v = radial and angular velocity

a = the thermal diffusivity
= the angular coordinate,

Ap = defined as [ - P
p = the water density
p = an average water density.
0 = dimensionless temperature, (T-T)/AT (AT = To-T i)

xV = dimensionless stream function (= ii/x)
= the stream function

R" = radius ratio (rO/ri).

This %N ,rk covers a temperature range from 00 to 20'C with the density-temperature relation rep-
resented by

Po = 1 + 13iT + 1 T2+ P3T 3 + 14T 4  (61)
p

where po = 0.9998396 (g/cm3) is water density at 0°C, with 0' values given by
,' = -0.6789452x 10-4(1/°C)

1 2 = 0.907294338x10- 5(1/oC 2)
P'3 = 0.964568125x 10- 7(1/C 3)
P' 4 = 0.873702983x10-9(l/PC 4).

A nonlinear Rayleigh number Ran and an inversion parameter y' were used to characterize their
computed results:

Ran- A 32 AT2 (62)
(R"- I Pr

and

=2 (TmATTo) (63)

where A = a size parameter defined as gL3/a 2

P2 = a coefficient defined in eq 61
AT = ro-ri

and 'y' is related to R' defined in eq 43 by 'y' = -2R'.
In their study, the value of y'varies between -29 <y' < 0. When y' = -1, Tm is half way between

TO and Ti and the densities on the inner and outer cylinder are the same. When Y ' < -2 and 7' > 0,
no inversion occurs. When Iy'l >> I the fluid behavior tends to that of a common fluid with a linear
equation of state. Figures 44a-44d show the variation of the isotherm and streamlines as a function
of Ra n$ R" and y'. In Figure 44a, y '= 0 (i.e., To-40C), and the fluid near the outer cylinder is heavier
andtherefore is moving downward while the relatively higher fluid near the innercylinder is moving
upward (this is nearly equivalent to Fig. 34a and 36a). The distortion of isotherms reveals a strong
convective motion in the cavity. The maximum heat transfer, indicated by closely spaced isotherms,
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a. Ra, 6350, R" =2.6, y' =0; Wax 5.50, Aij 0-583. b. Ra,, = 6350, R" 2.6, y'= -1;Ivja =. 8 0 , min =-0.00'2, Aj
=0.225.

C. Ra, 6350, R" =2.6, y'=-2.0; imax 1.90, Aij 0.238. d. Ran 1 7250, R"=2.6,y'= -. 77; IMax6.70, -0.7

and Aiv = 1.242.

Figure 44. Variation of isotherms and streamlines as function of Ran, R" an ' (Nguyen et al. 1982).
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occurs at the top of the cavity for the outer cylinder and at the bottom of the inner one. Figure 44b has
the same parameters of Ran, R", but y' is changed from 0 to-I (this is equivalent to Fig. 38a and 38b).
The flow pattern is a direct consequence of the maximum density of water at 40C (the heavy dashed
line represents the 4°C isotherm and this define the regions of maximum density). The convective
motion inside the cavity is now considerably lessened as compared with the case of '' = 0.

Figure 44c depicts the case of y' = -2 (this is the case when Ti = Tm). The local heat transfer is
maximal at the bottom of the outer cylinder and at the top of the inner one. This situation is
completely opposite the case described in Figure 44a. For the limited range of -0.75 <y'Y < = 0.90,
the tendency for the clockwise circulation pattern to form two cells is shown in Figure 44d. The
distortion of the isotherm pattern in the upper part of the cavity is the result of the intensive
convection generated by the clockwise vortex located in the region. This is somewhat similar to the
flow patterns exhibited in Figure 34c.

Figure 45a shows the variation of dimensionless temperature 0 as a function of dimensionless
radius R for Ran = 6350, R" = 2.6 and y' = 0. The temperature distribution is very similar to those
of the experimental values shown in Figure 36a. Figure 45b is the corresponding local Nusselt
number distribution as a function of angular coordinate. The NUloc o reaches a minimum at 1800
while the inner cylinder has a minimum heat transfer at 00 (this is nearly identical to the distributions
shown in Fig. 36b).

The values of NujC j and Nu,,,,, are defined as

Nu oc, i =- In R" [R+- ] (64)
SR+  

R'+ = II(R"-I )

and

Nuj -, = In R + - (65)
L RaR+=R~'("I

aoR RO - "I( - 1)

An overall average Nu can be expressed as

Nu=on j[R +.I+ v1,-

In a. (66)

101 +R R+-R"I(R"- )

Figure 46a shows the effect of nonlinear Rayleigh number on Nu as a function of ' for the case
of R" = 2.6, where Nu and the minimum Nu values increase as Ran increases. For all the Ran range
studied, the minimum Wu occurred at y' values somewhat greater than-I (= -0.75). The influence
of R" on Nu is shown in Figure 46b for the case Ran = 104. It is clearly shown that Nu occurs at values
of y'> -1 but approaches y' = -1 as R" increases.

In a square enclosure
Watson (1972) performed the first analysis on the effect of inversion temperature on the

convection of water in an enclosed square cavity. In this study, the effect of temperature-dependent
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Figure 45. Variation of dimensionless temperature 0 as function of dimensionless
radius, Rfor Ran = 6350, R" = 2.6 and-y' = 0 (Nguyen et al. 1982).
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Figure 46. Variation of overall Nusselt number Nu with y' (Nguyen et al. 1982).

viscosity was found to result in changes in magnitude rather than the characteristics of the flow. The
decrease in viscosity in the vicinity of the hotter wall, accompanied by higher fluid velocities, gave
rise to the increases in heat transfer indicated by the dashed curve in Figure 47. It can be seen that the
Boussinesq model displayed a completely different heat transfer phenomenon in a system containing
a density extremum.

Lin and Nansteei (1987a) analyzed the problem of natural convective heat transfer in a square
enclosure that contained water near its density maximum. The square enclosure had two sides of length
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Figure 47. Comparison of Nu from Boussinesq

0 4 8 12 16 model,full equation andconstant viscosity model
T C as function of T, (Watson 1972).

Th L

M 0

k - L

Figure 48. Schematics of the square enclosure with thermal

conditions (Lin and Nansteel 1987a).

L with the two opposing vertical walls maintained at Th and Tc for the temperature range 00 5 T, < Th

< 20"C. The horizontal walls were insulated (see Fig. 48). The enclosure was supposed to be
sufficiently deep to ensure an essentially identical flow field in planes of different depth. In addition,
the following assumptions were made: 1) the flow is laminar and two dimensional, 2) physical
properties, except for the density in the buoyancy force term, are constant and evaluated at the cold
wall temperature Tc, and 3) the viscous dissipation can be neglected.
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The dimensionless governing equations are

Dk Ra"' 0- R 1--2 (0- R) _0 + V2 (67)
DT Pr ax

DO _L V20 (68)
Dr Pr

v = - . (69)

The initial and boundary conditions are

U=V=0, 0= 1, at i=0
2

O(O,Y) = 1, 0(I,Y) = 0, at T >0

ao (X, 0) a (X, 1) = 0. (70)

x = _ 0 on the boundary with the dimensionless variables defined as
ax ay

X=x__, y-Y
L L

U= uL, V =vL, -T-T
V V Th - Tc

V v L 2

in which W is the stream function, and is the vorticity. Additional dimensionless parameters ap-
pearing in eq 67 and 68 are the Rayleigh and Prandtl numbers:

a gpm a, L3 (Th- Pr= Y

PcVa a

in which a , and q are from the density-temperature relation

p = p.[1- ,IT- T q]  (71)

with Pm = 999.9720 kg m- 3, a, = 9.297173 x l0-6(OC) - q, Tm = 4.029325 0C and q= 1.894816. The
density distribution parameter is defined as

R'= IMTc (72)
Th- rc
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which is equivalent to -1/2 y'defined in eq 63. In the case R' <0 (i.e., for the condition of T > Tc>
Tm), the fluid density increases monotonically with X across the enclosure. The density distribution
results in a clockwise circulation pattern. When R' > 1 (i.e., for Tm > Th > Tc), the distribution is re-
versed, and hence a counterclockwise pattern results. When R' is in the range of 0 < R' < 1, density
increases to p = Pm at T = Tm and then decreases. Hence, this heavier fluid in the enclosure interior
descends while the lighter fluid adjacent to vertical boundaries ascends, giving rise to a pair of
counterrotating vortices arranged horizontally in the enclosure.

Streamlines and isotherms
For small values of Ra"', the inertial effects are relatively unimportant, and so an approximate

balance between viscous and buoyancy forces results. Figure 49 shows a series of dimensionless
streamlines for Ra" = 103 but for a range of R' values from 0.4, 0.5, 0.55, 2/3 and 0.75. At Ra"' =
103, the temperature fields deviate from the pure conduction field; i.e., 0 = 1 -Xonly slightly. However,
the convection effects on the temperature fields increase as IR'- 1/21 increases. As R' increases (or
decreases), the maximum density contour moves toward the hot (or cold) wall. As a result, the
counterclockwise-rotating cell on the right for the case of R' = 0.4 becomes stronger and larger at
the expense of the clockwise-rotating cell on the left asR' increases. ForR' = 2/3, the cell on the left
was divided into two separate clockwise-rotating cells in the upper and lower left-hand corners of
the enclosure. In this case, although the maximum density contour (0 m = 2/3) is located approximately
at X= 1/3, upward flow on the hot walls occurs only near the corners of the enclosure. The circulation
of the counterclockwise right-hand vortex has become so strong that it drags (by virtue of the fluid's
viscosity) relatively light fluid down along the hot walls. When em = R' = 3/4, even the two tiny
corner cells are eliminated by the strong counterclockwise-rotating cell on the right, resulting in a
completely unicellular flow. In the instance R' = 1, density increases with temperature and hence
decreases with X, resulting in a single counterclockwise rotating cell.

Figure 50 shows the AV and 0 fields forR' = 1/2 and Ra" = 104 and 106. The bicellular flow structure
observed forRa" = 103 and R' = 1/2 still prevails for 1 04 <Ra" < 106 with the cells becoming more
angular in shape. The flows in the left and right halves of the enclosure are identical except for the
opposite direction of rotation. The large temperature gradients near X = 1/2, Y 5 1 are due to the
internal circulation of the two counterrotating cells that bring warm and cold water from the hot and
cold walls, respectively.

For a slight increase in R' from R' = 1/2 to R' = 0.55, there is no spatial symmetry (see Fig. 51)
because the maximum density contour 0 m = R' = 0.55 has now shifted toward the hot wall. The large
counterclockwise cell adjacent to the cold wall becomes more dominant. Cold water is swept across
the upper boundary and into the upper left-hand corner, which shifts the maximum density contour
0m = 0.55 toward the hot wall in the upper half of the enclosure. As a result, there is no upflow along
the upper portion of the hot wall for Ra"' = 106 because the strong counterclockwise vortex over-
comes the (upward) buoyancy force in the fluid directly adjacent to the upper portion of the hot wall.

Heat transfer
The local heat flux in the horizontal direction can be expressed as the superposition of conductive

and convective modes, i.e.,

q =-k + pcp(T- T) u. (73)

Expressed in dimensionless form, the Nusselt number can be rewritten as

Nu (X,Y)- qL = N0 + PrOU. (74)
k(Th - T) aX
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Figure 50. Dimensionless stream function (N x 103) and temperature [0 = 0(0.1)1] contours for Ra'= 104

and 106 and R' = 1/2 (Lin and Nansteel 1987a).

The average Nusselt number over a vertical cross section is

Nu (X) = INu (X,Y) dY. (75)

Figure 52 shows the variation of Nu with R'forRa" at 103, 104, 105 and 106. The most striking feature
of this figure is the minimum in heat transfer at R= 1/2, which is caused by the symmetric, dual-cell
flow structure that results when Th and Tc straddle the maximum density temperature. The dual-cell
structure prevents direct convective transfer between the hot and cold walls. Each cell acts like an
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Figure Si. Dimensionless stream function (ij xJ10&) and temperature je = 0(0.1 )1] contours for Ra"= JO4

and 106 and R' = 0.55 (Lin and Nansteel 1987a).

insulator, preventing warm (or cool) fluid from the hot (or cold) wall from coming in contact with
the cold (or hot) wall. The only direct thermal communication between the two walls occurs atX =
1/2 where the warm and cold streams meet and energy is transferred primarily by conduction. Nu
increases very sharply for 1/2 < R' < 1/2 and when Ra" is large, because one of the two cells in the
enclosure wets both walls (see Fig. 51).

Figure 53 shows the variation of Nu with Ra" with R' as a parameter. It can be observed that asRa
becomes larger, the heat transfer behavior is similar to that observed for a Boussinesq fluid, that is

Nu a R"x 0 2
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Figure 52. Variation of Nu with R' using Ra"..as a parameter (Lin and

Nansteel 1987a).
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Figure 53. Variation of Nu with Ra'using W'as a parameter (Lin and Nansteel 1987a).
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independent of R '. The behavior for large Ra" is seen to blend smoothly into the conduction-dominated regime, Nu - 1, for smaller Ra"'.

In a rectangular enclosure
Desai and Forbes (1971) reported the first numerical investigation on free convection of water (in

the vicinity of maximum density) in a rectangular enclosure. The vertical walls were maintained at
different temperatures and the horizontal walls insulated. Two sets of cold and hot wall temperature
combinations (i.e., T0 = 2*C, Th = 6C and Tc = 00C and Th = 80C) were used for each aspect ratio of
1 or 3. Desai and Forbes (1971) used two representations of density-temperature relations:

Ps [0.999841 + 0.000132 sin iE)

and

Pp = 0.99984247 + 6.460 X l0-5 T -8.0 X l0-6 T2 .

Their finite difference approximation solution leads to the heat transfer across the enc.osure as

Nu= -(I )

in which

w

(where W is the width of the enclosure), and 0 is the dimensionless temperature defined as

0"= Tr-T when T =(Th+TC)/2.
Th- T

Table 2 gives the steady-state mean Nusselt numbers as a function of aspect ratioA (defined as height/
width), T., Th and the density temperature representation. Clearly, the Nu values are higher for the
00 and 8°C combination regardless of the function of density it is based on.

Nansteel et al. (1987) theoretically extended the work of Lin and Nansteel (I 987a) to the case of
rectangular enclosure at low Rayleigh numbers. The schematic representation of the problem is the
same as shown in Figure 48 except for an additional variable, the aspect ratio A.

Table 2. Steady-state mean Nusselt numbers (Desai and
Forbes 1971).
A (= H/W) T (C) Th (OC) Nu (based on p:) Nu (based on pp)

1 2 6 1.5164 1.3096
1 0 8 2.7738 2.5989
3 2 6 1.1314 1.0179
3 0 8 2.1439 1.9733

Density based on sine and polynomial function, respectively.
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With the assumption of steady, laminar and two-dimensional flow and constant physical properties
(except for the density in the buoyancy force term) evaluated at the extremum temperature and with
the density-temperature relation represented by eq 2, i.e.,

p = p.[1-y(T-Tm)2]

the dimensionless equations of motion and energy transfer are

__ , V__ - (V a PrV A 2 Ra(0 -R'))

a Nax aVy,,' Pr ( 4 V -a (76)

and

eO a ' ao = V2 9 (77)

ay ax ax a'

in which the Rayleigh number Ra and the density distribution parameter are given as

Ra - gYL 3 (Th- T) 2 /v

and

R = (Tm- T)/(Th - T).

The solutions of eq 76 and 77 are assumed to be expanded in powers of Ra and 0, i.e.,

V= V11 Ra + 12 Ra 2 + .... (78)

0= 00 + 01Ra+0 2 Ra 2 +.... (79)

The average heat flux at the hot wall is

H

q = k a (T~o) dy

If expressed in terms of Nusselt numbers, this becomes

Nu (0 Y dA (80)
k (Th-- T) A)0 ax

Substituting eq 79 into eq 80 yields

Nu = Nuo + Nul Ra + Nu 2 Ra 2 +..... (81)

where
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A

Nul = - I 1  (0, Y) dY.
A fJo ax

The leading term Nuo  1 is the contribution to the heat transfer from the conduction temperature
field 00 = 1 - X. The first correction Nu, = 0 is necessary because of the antisymmetry of 0, with
respect to Y = A/2. Therefore the first non-zero correction to heat transfer is

rA
Nu2  a02 (0, Y)dY

A 1, aX

which can be determined in terms of 01 and NI by

NU2 I 0, --- d dX .(82)
A f ay(2

Flow patterns
Figure 54 shows the variation of %Vj with R' = 1/2, for A = 1/2, and 2. The strength of the

counterrotating flow appears to decrease with decreasing A. Circulation strength is effectively
quenched with decreasing A because of the chocking effect of the horizontal boundaries as they
approach one another. Figure 55 shows the variation of W, withR' = 0.65 (a slight increase from Fig.
54) and A = 1/2 and 2. It indicates a transition from a two-cell to three-cell structure with increasing
A. This is because the large counterclockwise cell on the right is close to the hot wall and able to drag
the warm and lighter fluid downward, overcoming the upward buoyancy force.

-8 8

-14 14

-n 8
A4

-2.5 2.5
-4 4

a.A-112. b.A=2.

Figure 54. Variation of dimensionless stream function (y'1 x0 5 )forR' = 1/2 (Nansteel etal. 1987).
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Figure 55. Variation of dimensionless stream function (4ji 1 xlO 5)for R' = 0.65 (Nansteel etal. 1987).
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Figure 56. Dimensionless first correction 01 as function of R' with A = 1 (Nansteel et
al. 1987).

Heat transfer
Figure 56 shows the first correction 01 to the conduction temperature field 0 = 1 -X for a square

enclosure. Figure 56a, for R' = 1/2, clearly shows that 01 is antisymmetric with respect to the en-
closure midplanes X = 1/2 and Y =A/2. As a consequence, 81 is a positive (or negative) perturbation
on 0 in the upper left-hand (or right -hand) and lower right-hand ( or left-hand) quadrants of the
enclosure. Hence, isothers (0) will be slightly compressed toward the vertical midplane, X= 1/2,
in the upper half of the enclosure anddisplaced outward from the midplane in the lower half. Figure
56b shows 01cnor for the case of R' = 0.65. It indicates that 0 results in a negative perturbation
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transfer, Nu2 as function of R'
(Nansteel et al. 1987). R

to the temperature field in the upper half of the enclosure and a positive perturbation in the lower
half. This results in isotherms being displaced slightly toward the hot wall in the enclosure's upper
half and toward the cold wall in the lower half. Figure 57 shows the variation of the first correction
to the heat transfer Nu2 with R' for A = 1/2, 1, and 2. Nu2 reaches a minimum at R' = 1/2. It should
be noted that the perturbation, Nu2, to the pure conduction heat transfer rate increases rapidly and
symmetrically with respect to R' = 1/2. The magnitude of Nu2 as well as the sharpness of the
minimum atR= 1/2is clearly seen tobe an increasing function ofA. For fixedR' > 1/2 with increasing
A, there may be radical change in the basic structure of the flow. As indicated in Figures 54a and 55b,
the flow changes from a dual-cell to tri-cell structure in which the large counterclockwise right-hand
cell wets both the hot and cold walls. This direct contact of cells with both vertical boundaries greatly
enhances the convective contribution to the cross-cavity energy transfer.

In a horizontal layer
Forbes and Cooper (1975) presented the first analytical study on natural convection, caused by

cooling from above, of a horizontal water layer initially at temperatures of either 4*C or 8C. The
water was confined laterally and underneath by rigid insulators and the upper horizontal surface was
subjected to 1) a constant 0°C temperature and a rigid conducting boundary, and 2) a free water-to-
air convection boundary condition, in which the convective heat transfer was held constant at values
of 5.68 or 284 W/m 2K while the temperature of the ambient air is kept at O'C. In their study, the ratios
of width to depth (WID) were 1, 3 and 6 (WID is the reciprocal of aspect ratio A).

If the flow is considered to be laminar and two-dimensional (this restricts the dimension of D to
the order of I cm), and density variations are considered only in the buoyancy term, the governing
dimensionless equations of motion and energy can be written as

Vorticity

'-f + . a" + V a" = 2 (Ra*) + V2, (83)
0 k Pr aX PraY ax

and
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Energy

Pr- + U O + V O = V2 0 (84)
k ax aY

Stream function

j2= V2M, (85)

Velocities

U b_, v - (86)

The above equations have been made dimensionless through the use of the following dimensionless
variables:

X Y =Y
D D

U= uD, V vD, - vyt (87)
a a D 2

cc a

The initial and boundary conditions may be written as

W (X,Y,O)= O, 0 (X,Y,O)= 1

u (x,Y,o) = V (x,Y,o)=o

U = V = 0 on all boundaries

and

o"-0 (o,Y, r) = LO (D0 Y,,T) = I--(x, o, ) = 0.

At the free surface (Y = I) the boundary condition is either:

0"" (X, I, r) = 0 where 0"" = T- T (88)
TO- Ts

for fixed surface temperature or

h (Ty=D- Ta) = - k (89)
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If 0'" is defined as

0 T -Ta
To -Ta'

eq 89 becomes

hD Nu =(La")(90)

Here

Ra* Pr P_____P

where p is the density at (T +T 0)t2 in which Toand T.are the initial water and water surface tem-
perature, respectively. The temperature-density relation is expressed by

p (T) =0.99984247 + 6.46 x 1075 T - 8.0 x 1076 T2.

Figure S8. Transient dimensionless stream lines: W/D =1.0. T"' =8 9C, t 05 OSs
(= 0.002), Ts = 0 9C (Forbes and Cooper 1975).
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a. Transient streamlines.

Figure59. Transient dimensionless streamlines and isotherms: W/D = 1.0, T, = 8 C,
t = 250 s (T = 1.0), and Ts = OC (Forbes and Cooper 1975).

Streamlines and isotherms
The implicit alternating direction method was used to solve the governing equations, and the

results are expressed in transient streamlines and isotherms. Figures 58-61 show a series of transient
streamlines and the corresponding isotherms for WID = 1.0, To = 81C, and a constant surface tem-
perature ofT. = 00 C, with time values of0.5 s (T = 0.002), 250 s, and 62.5 min. The streamlines shown
in Figure 58 are identical to the flow configurations observed in both experimental and theoretical
investigations of natural convection in horizontal layers of fluid heated from below. In this figure,
the 4*C isotherm lies very near the water surface, and the entire cavity region is hydrodynamically
unstable. The water current ascends in the central region between the two eddies, and descends
adjacent to the two lateral sides of the cavity.

At r = 0.1 or 250 s, (Fig. 59a and b), the eddy that appeared on the left side of the flow field att
= 0.002 has momentarily disintegrated. The heavy dotted line shows the 4*C isotherm; this region
of maximum density provides the driving force for the eddy motion. As the region of the maximum
density descends further, the 4C isotherm separates the two eddies as shown in Figure 60a. The
eddy entirely beneath the 4*C isotherm is therefore the result of unstable density gradients.

This circulation flow exerts a viscous shearing stress upon the stable water above the region of
maximum density, and this shearing stress provides the energy necessary for eddy formation in the
region of hydrodynamic stability. The straight parallel isotherms that appear in the upper portion of
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b. Transient isotherms.

Figure 59 (cont'd).

Table 3a. Maximum and minimum values of
stream functions, with a constant temperature
boundary (Desai and Forbes 1971).

Figure WD T 0 W Wi A

58 1 8 3.0 -3.0 1.0
59(a) 1 8 0.0 -6.0 0.40
60(a) 1 8 0.5 -0.4 0.05
61(a) 1 8 0.00128 0.0 0.00008

Table 3b. Maximum and minimum dimension-
less temperatures, with a constant temperature
boundary (Dm1a and Forbes 1971).

Figure W/D T4 Oma,3 Omin 9

59(b) 1 8 0.72 0.0 0.04
60(b) 1 8 0.60 0.0 0.03
61(b) 1 8 0.034 0.0 0.002
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a. Transient streamlines.

Figure 60. Transient dimensionless streamlines and isoithermls: W/D = 1.0, T, =8 -C,
t = 500 s Cr = 2.0) and T, = OC (Forbes and Cooper 1975).

Figure 60b indicates that the heat transfer in the stable region is largely by conduction. The eddy in
the unstable region continues todistort the temperature distribution and, therefore, heat is transferred
in this region primarily by convection. Figures 6 1 a and b depict the flow pattern and the temperature
distribution, respectively, at r = 5.0 (or 62.5 min). The 4°C region has now passed out of the domain
of the system and, therefore, the fluid body is entirely stable. The large eddy appearing in Figure 61 a
is the same eddy that previously appeared above the region of maximum density (Fig. 60a). The
momentum of this eddy, at this time, has not yet been dissipated by the opposing viscous forces.
Consideration of the magnitudes of the stream function (see Table 3a, 3b) reveals that the fluid
velocities are much smaller than those depicted in Figure 60a. Indeed, the fluid motion is so minute
that the temperature field appears undisturbed (Fig. 61 b) and the water seems to have stratified. Heat
transfer, therefore, at these times is purely conductive.

In the case ofT o = 4*C, the imposition of 00C upper surface boundary temperature cannot lead to
eddy formation, as the density gradient in this case is always stable. The fluid motion is not sufficient
to cause distortion of the temperature field and the heat transfer is purely conductive.

For the case of TO = 8*C, numerical results obtained for the WID = 3 and 6 enclosures were es-
sentially identical to those for W/D = 1, differing only in the number of eddies produced by the
motion. Three and seven pairs of coupled eddies were produced in WID = 3 and 6, respectively, and
the 40C isotherm descended through the layer. In all cases studied, the motion was "damped out"
as the 4C isotherm reached the bottom, with a stable water layer resulting for the entire cavity.
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b. Transient isotherms.

Figure 60 (cont'd).

Convective boundary
For the case of h = 5.68 W/m 2K, Forbes and Cooper (1975) reported that it took much longer to

set up the region of maximum density. The following results will summarize the work on h =284 W/
m2K. As indicated eq 90, i.e.,

O Y V=l I JD ( ")V=l "

The value of (0"')y__ = 1.0 for both values of h. Since D and k are constants, a 50-fold increase in the
magnitude in h will produce 50-fold increase in the magnitude of the initial temperature gradient at
the water surface. Figures 62a and b, 63a and b, 64a and b show the streamline and isotherms for W1
D = 3. To = 8°C, h = 284 W/m 2K for a real time of 3, 4 and 5 minutes, respectively. Figures 65a and
b show the case of WID = 6.0, To = 80 C, h = 284 W/m 2K with t = 4 min. Tables 4a and b show the
maximum and minimum values of stream functions and dimensionless temperature, respectively.
Figures 62a and b reveal the flow pattern and temperature distribution 3 min after the initiation. Since
the region of maximum density is very near the upper surface at this time, the flow pattern shown in
Figure 62a is very similar to the flow that occurs in horizontal fluid layers heated from below. At t =
4 minutes after initiation, the 40C isotherm descends far enough through the liquid to produce two
layers of eddies. The lower eddies are the result of an unstable density gradient and the upper eddies
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a. Transient streamlines.

Figure 61. Transientdimensionlessstreamlinesandisotherms: W/D =1.0, ,To 89'
t 62.5Smin ( =S.0)and T = 0 'C (Forbes and Cooper 1975).

Table 4a. Maximum and minimum values of
stream functions, with a constant temperature
boundary (Dewa and Forbes 1971).

Figure W/D To Imi. A

62(a) 3 0.006775 1.8 -2.4 0.2
63(a) 3 0.006775 0.2 -0.22 0.02
64(a) 3 0.006775 0.21 -0.10 0.01
65(a) 6 0.006775 0.22 -0.22 0.02

Table 4b. Maximum and minimum
dimensionless temperatures, with a
constant temperature boundary
(Desal and Forbes 1971).

Figure W/D 0M 0mi . 8

62(b) 3 0.78 0.18 0.03
63(b) 3 0.63 0.15 0.03
64(b) 3 0.56 0.12 0.02
65(b) 6 0.62 0.14 0.02
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b. Transient isotherms.

Figure 61 (cont'd).

Ix -

a. Transient streamlines.

Figure 62. Transient dimensionless streamlines and isotherms: W/D =3.0, To 8 "C,

t= min, and h = 284 Wlm~k (Forbes and Cooper 1975).
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b. Transient isotherms.

Figure 62 (cont'd). Transient dimensionless streamlines and isotherms: W/D = 3.0, T"
= 89C, t = min, and h = 284 WIm 2k (Forbes and Cooper 1975).

X

a. Transient streamlines.

b. Transient isotherms.

Figure 63. Transientdimensionlessstreamlinesandisotherms: W/D =3.0, T0 =8 C,
t = 4 min, and h = 284 W/m2K (Forbes and Cooper 1975).

are caused by the action of viscous shearing stress upon the water above the unstable region. Figures
64a and b provide an even clearer picture of the effect of the region of maximum density on free
convection in water. The 4°C isothermal line is observed to exist near the bottom of the enclosure
and the dimensionless temperature gradient (aO"/Y) is almost constant in the hydrodynamically
stable portion of the water. Figures 65a and b show the case for WID = 6. The transient formation
of streamlines and dimensionless temperature distribution are very similar in nature as in the case
of WID = 3. However, it contains seven pairs of eddies instead. No conclusive reason is given for
the asymmetrical nature of the streamline and the temperature distribution.
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a. Transient streamlines.

b. Transient isotherms.

Figure 64. Transient dimensionless streamlines and isotherms: W/D= 3.0, To = 8 9C,
T = 5 min, and h = 284 WIm2K (Forbes and Cooper 1975).

Figure 65. Transient dimensionless streamlines and isotherms: W/D = 6.0, To = 8'C,
t = 4 min, and h = 284 WIm2 K (Forbes and Cooper 1975).

In a circular and confined melt layer
Yen (1968) and Yen and Galea (1969) were the first to investigate the natural convection and the

temperature distribution caused by the density inversion of the continuously deepening layer

(originally there is only a single phase, i.e., a solid ice melt layer forming upon the application of a

constant surface temperature). In their study, both modes of melting were employed (i.e., melting from

below and the top). They found that the onset of convection and the transition from a conductive to

convective heat transfer mode depends on the imposed boundary temperatures, a rather strong function
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Figure 66. Schematic representation of the interdependence of
stable andunstable regions with the thermal boundary conditions.

of temperature in melting from below but a considerably weaker one in the case of melting from
above. Figure 66 is a schematic representation of the interdependence of stable and unstable regions
with the thermal boundary conditions. Figures 67 and 68 show some typical temperature distributions
in the melt layer at various times after initiation of the melting (Yen 1984). It can be seen that the
time elapsed to deviate from linear distribution depends on the boundary temperature imposed. For
melting from below, the higherthe boundary temperature the shorterthe time needed to change from
conduction to convection. On the other hand, for melting from above, since the maximum density
region is near the water/ice interface, the overlying stable layer becomes thicker as upper boundary
temperatures increase, extending the 40C region upward and thus reducing its effectiveness in
overturning the water near the ice surface. The major difference in the temperature distribution in
the pseudo-steady state is that the constant temperature zone depends on the boundary temperature
in melting from below, while the temperature in the constant temperature region is -3.2°C inde-
pendent of the upper boundary temperature in melting from above (see Fig. 68c).

Yen (1980) derived heat flux expressions for the melt layer formed by melting from both below
and above. In his experiments where the melting rate was determined, the total upward ordownward
heat flux for melting from below or above was evaluated by

q = pdA [Lf + Ci (Tm - Ti.)] + E91 [z (t) (T + T.)] - Kid zH (91)

'It 2t dz1 =t
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Figure 67. Mean temperature profiles for melting fromt below (after Yen 1984).
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Figure 68. Mean temperature profiles for melting from above (after Yen 1984).
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where Lf = latent heat of fusion
Ci and T. = specific heat and temperature of ice

p = water density
T.o = the ice initial temperature.

The term (pc 12 t)[z(t)(Tm+T)] represents the mean sensible heat content variation of the entire layer
of a depth z(t). Since Tm = 00C, therefore, T stands for either T, or T2. The contribution of this term
to the overall heat flux was found to be much more significant in the case of melting from above
(since the melting rate is much slower in the case). For experiments in which the mean layer
temperature was measured as the melting progressed, the heat flux was approximated by

ILk_ [(dT)2 + (dZZ)l]N / - t i )

q 2 d) (92)
At

in which (dTldz) 2 and (dT/dz), are the mean temperature gradients at the stable region near the upper
boundary for melting from above, and at the lower warm plate for melting from below. Subscripts
I and 2 indicate the beginning and end of each period and At is the total time period for calculating
a value of q. At least a dozen or more of the periods (with varying durations) were used. The heat
from above was found to be a rather weak function of T2 and can be represented by

q = 177 (T 2) '3 °3 . (93)

Eq 93 is valid for T2 ranging from 11.75 to 39.9°C. For melting from below, the heat flux is found
to be a linear function of T, and can be expressed as

q = - 19 0 0 + 31 5 (TI) (94)

forT, ranging from 7.7 to 25.5°C. Higher values of T. and thus higher temperatures in the convective
zone, resulted in greater convective motion in the unstable region and consequently reduced the
thickness of the stable layer adjacent to both the ice and the thermal boundary. The work of Townsend
(1964) and Adrian (1975) is similarto the case of melting from above. However, in their investigations,

a rather deep invariant water layer was used throughout the experiment and there was no phase
transition taking place at the bottom of the tank. Both Townsend (1964) and Adrian (1975) reported
a nearly constant heat flux of approximately 340 W/m 2 independent of the initial water temperature.

Melting in bulk water
Merk (1954) reported the most comprehensive and earliest theoretical study of melting free

convective heat transfer, such as that for spheres and cylinders. Employing a third-order density-
temperature polynomial of water density and applying the Von Karman-Pohlhausen integral
method for the case of Pr >> 1, he successfully solved the boundary layer equation and developed
a general Nusselt number ratio:

NU = [(P5 + 6 7 15P 2M + 8471 P3n) [I+(S2)] 1 114
Nuo 13671 31031 !- StJ

where S is the shape factor of the temperature profile and is connected to the Stefan number St =
cp(T-T.)/Lfas
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S -2+ 3__ 3 i_4  St (96)
St St 3

or
St- 6S (97)

(S +2)2

where T is the bulk water temperature. The values of Pp, P 2 and P 3 are expressed as

p. = 1 - 8-9-S+-19 s2

217 434

p2= 1 - S--- + 30.3 S2 _ 19 S 3
1343 2686 2686

and

P3 1- 6475 S + 3537 S2 _ 199 S3 + 19 S 4 .
8471 16942 8471 16942

The values of m and n are defined, respectively, as

m = (0' + 3 P' T-)m/N .

n 02. &/ (N3.)

where Om = Tm,-T. and N and 13. are defined as

N = l + 13'" T0 + ' T.2+ 1' T

and

+ .T+ 36 T!.)/,N

in which the O's are the coefficient in the formula for the specific volume of the water, i.e.,

I =_- (I + Kj'' T + 2' T 2 + 6 T3) (97a)

P PO

Nuo is the Nusselt number for the case of St = m = n = 0. Merk (1954) reported that for large values

of the Prandtl number, neither the shape of the body nor the psition on the surface influences the
ratio Nu/NuO. Therefore, this ratio can be replaced by Nu/Nu0 , which can be expressed by the
following if only the effect of melting is considered (i.e., for m = n = 0)

;0 = 1 - S+419- S 2  5 1/4

(4 1+I S (98)
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Figure 69. The influence of melting (S < 0) and solidi- 0 1 , 1
fication (S > 0) on the heat transfer in thermal convec- 2 - 0 1 2

tion for large Prandt/ numbers (after Merk 1954). S

Figure 69 is a graphic representation of eq 98; it clearly shows that for S < 0 or for melting, Nu < Nuo.
For solidification, i.e., S > 0, Nu > Nuo. For the case of no melting, but with convective inversion,
then S = 0 and hence P, = P2 = P 3 = 1. Eq 95 becomes

Nu = (I + 0.4912 m + 0.2730 n) 1/4 . (99)
Nuo

By defining Nuo for large values of the Prandtl number as

Nuo = C (GrP)'1 4 
-f C(-- (100)

eq 99 can be written as

f = Nu = [L,em (1 +0.4912 m +0.2730 n)]1 4  (101)
( L3 1

/4

wheref is a dimensionless number. For small values of T, ,. P I" + 202" T, m = [2'0 ndp., and

n - 0, eq 101 can be transformed to

f = [1.50902 IT..- r, v IT,- rd ]'/4 (102)

in which Ti is the inversion temperature:

Ti = -0.663 1- 0.326 Tm. (103)
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indicating that the inversion temperature for melting ice in water is somewhat greater than -4"C.
The significance of the inversion temperature is clearly seen from eq 102 at T = T1,,, Nu = 0, and
the direction of the flow in the boundary layer along the surface of the body is inverted (for T -< T.
the flow is upward and for T "> T.v it is downward). Using the general eq 95. Merk derived the
minimum Nusselt number at Tv = 5.30*C for S = 0 (no melting) and T.v = 5.3 1 *C for S < 0 (with
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melting). Figure 70 shows the effect on the value off(i.e., the value of Nu) with and without melting
with the convective inversion. It is clearly shown that the effect of melting is only appreciable for
T_ > Tiv and may be neglected for T. < Tiv. Experimental results of Dumor6 et al. (1953) and
analytical results from the non-melting vertical plate study by Ede (1955) generally confirmed
Merk's findings.

Tkachev (1953), using photographic techniques, reported a minimum Nusselt number for melting
ice cylinders at 5.5°C and was the first to notice the peculiar nature of the maximum density
boundary layer. He suggested that under certain conditions the boundary layer might be split, with
a region of predominantly upward motion immediately adjacent to the ice surface and a region of
downward motion outside this. Tkachev conducted melting experiments on spheres as well as on
vertical and horizontal cylinders. Using the same initial cylinder diameters but with various bulk
water temperatures, he found that the coefficient of heat transfer is lowest for a water temperature
of about 5.5°C. He correlated his data with the following dimensionless expressions as

NUmd = 0.40 (GrPr)n (104)

and

NUmd = 0.104 (GrPr)/, (105)

for cylinders for the values in the range of 102 < GrPr < 107 and (GrPr)md > > 107 , respectively. The
corresponding equations for spheres are

NUmd = 0.54 (GrPr)l/4  (106)

for laminar flow [103 < (GrPr)md< 107] and

NUmd = 0.135 (GrPr)I/ (107)

for turbulent motion [(GrPr)md > 107]. Subscript md represents the physical properties, and the
diameter of the sphere or cylinder was evaluated at the arithmetic mean temperature [i.e., (Tm+T)/
21 and mean diameter [i.e., (d0 +df)/2] where do and dfare the initial and final diameter at the end of
the experiment. Based on his experimental data, Tkachev further presented an expression for
determining the time required for completing melting as

StFOmdNUmd = 0.305. (108)

The suggestion of split boundary layer flow was verified by the analytical and experimental work
of Schechterand Isbin (1958), in which an isothermal, vertical, non-melting plate was used. Figures
71 and 72 compare the theoretical and experimental results for the unidirectional and inverted
convections, respectively. The theoretical curves in Figures 71 and 72 are given by

0892U(3+ 5 +1 Pr t (109)
Nu = 0.892 (0.952 + Pr) P

and

Nu - 0.652 GrPr I+ tL + i)4  (110)
5 7

79



C z0.422 1 0.006_
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GrPr (after Vanier and Tien 1970).

where m and n are the same as appeared in eq 95. They reported that a test of the type of region that
will prevail for given conditions of plate and bulk temperature can be stated; i.e., if

1+ m +!! > 0,
3 5 7

there will be normal convection (unidirectional), and if

1+ -M+ aL < 0,
3 5 7

there will be inverted convection. Schechter and Isbin (1958) concluded that the heat transfer
coefficient can be predicted for both regions with a deviation in Nusselt number of±10%, provided
the absolute value of (1/3 + m15 + n/7) > 0.05 by use of eq 109 or 110, depending on the convective
region. However, the boundary layer equations as approached either by the Von Karman-Pohlhausen
integral method or by the similarity transformation method did not yield meaningful results under
split-flow conditions.

To resolve this problem Vanier and Tien (1968) used an accurate numerical method to solve the
similarity equations for a semi-infinite vertical plate at constant temperature Tw immersed in an
indefinitely large volume of water at bulk temperature T ,,,. They reported that a new solution is
necessary for every combination of Tw and T.. By obtaining several hundred such solutions, the
authors were able to map out temperature zones for each flow regime. The split boundary layer was
found to be confined to two distinct triangular regions within which the similarity equations become
quite intractable. They confirm the findings of Merk (1954) that the melting heat transfer rates were
very similar to those for the case of non-melting.

Vanier and Tien (1970) conducted experimental work aimed at relating their numerical plate
results to a more practical geometry of the sphere (including the effect of changing body
configuration). This was also partially motivated by lack of detailed analysis and correlations of the
experimental results on the melting of ice spheres and cylinders presented by Dumord et al. (1953)
and Tkachev (1953). They presented their results in a least-squares-fitted semi-empirical equation as

Nu = 2 + C(GrP4)1/4  (111)

and found that for T > 70C, that the results did not appear to be affected by the maximum density and
that the most appropriate value of C is 0.422 ± 0.006 in the range of 1.7x 106 < GrPr < 2.4x 198 (Fig.
73, curve b). However, for T < 7C, nearly the same value of C is found but with considerably more
scattering (twice the standard deviation), indicating the need at least to incorporate another parameter
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such as Tmto adequately describe the heat transfer under these conditions. This was done by separating

the low temperature data into positive and negative deviations. For T < 3.80C, Nu values are higher

than expected (curve a), while for 4.1 < T < 7.1 0C, Nu values are too low (curve c). To check the

one-quarter power assumption in eq 111, a two-parameter fit was caried out, resulting in

Nu = 2 +0.437 (GrPt) '24s  
(112)

which provides an excellent verification. However, when the Grashof number was calculated by using

an aitmetic mean temperature basis of T,~ the constant C was found to be 0.52 for T> 1 4"C. This

provides a remarkable agreement with the results reported by Tkachev (1953). The effect of sphere

diameter and maximum density on heat transfercan be seen in Figure 74 where the curves are in general

agreement with the flat plate results reported by Varier and Tien ( 1968 ), which show a sharp minimum

between 50 < T < 6"C. To ascertain the effect of sphere diameter, Vanier and Tien (1 970) proposed

a correlation of the sphere results with those from theoretical analysis of a melting plate by

Nup / Nu = C (LID)3 4  
(113)

where L and D are the characteristic 
height of the plate and 

the diameter of the sphere. 
The least-

squares-fined constant C was found to be 1.106:1: 0.144. The scaled-up experimental 
data are shown

in Figure 75, which clearly shows that the melting sphere behaves very similarly to a melting flat plate

and that if all the transfer parameters are equal (including temperature, characteristic length, and

surface area), about 11% more heat is transferred to the plate than to the sphere. This is the effect of
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curvature on the flow velocities and is in good agreement with the analytical results reported by Merk
and Prins (1954) for non-melting free convection systems without maximum density effects, i.e.,

Nup / Nu = 1.14 (LID)314 . (114)

The minimum Nusselt number for spheres occurs at T = 5.35 ± 0.2°C, as compared to the value of
5.31 °C based on Merk's (1954) theoretical results.

The most recent study of heat transfer and ice melting in ambient water near its density extremum
was reported by Bendell and Gebhart (1976). In their experiment, a vertical ice slab (30.3 cm high, 14.8
cm wide and 3 cm thick initially) was immersed in water at a uniform bulk ambient temperature, Tw.
Figure 76 shows the experimental results along with the analytical results of Gebhart and Mollendorf
(1978) and those predicted with the Boussinesq approximation. Gebhart and Mollendorf's work is
similar to that of Vanier and Tien (1968) except that it gives a more accurate representation of the
density-temperature relationship of water. As Vanier and Tien pointed out, the validity of the simplest
boundary layer theory becomes questionable in the inversion region. However, beyond that region, the
experimental Nusselt number values are nearly equal to those predicted by theoretical analysis.
Bendell and Gebhart (1976) reported that for a melting vertical ice surface, upflow occurred when T"
< 5.60 C. For T> 5.50C, downflow was observed and was found to be in good agreement with earlier
results. Bendell and Gebhart (1976) found the minimum Nusselt number for the experimental
temperature range 2.20 : T < 25.20C occurred at T** = 5.60C. In the immediate neighborhood of the
flow direction inversion Tiv, very slow flow exists with the effective Grashof number becoming very
small. Therefore, the validity of the simplest boundary-layer theory becomes questionable, and no
theoretical results forthis regime were found in the literature. After multiplication by a factorof (0.102/
0.303)114(solid curve in Fig. 76), the theoretical results of Gebhart and Mollendorf (1978) generally
compared remarkably well with those reported by Vanier and Tien (see solid curve in Fig. 75), even
though a rather elaborate and more accurate density-temperature relationship of water was claimed
to be used in Gebhart and Mollendorf's study.
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Figure 77. Velocity profiles for T. = 2.0 °C (Wilson and Vyas 1979).

Wilson and Vyas (1979) reported the only experimental results concerning a velocity profile near
a vertical ice surface melting into fresh water at temperatures from 2" to 71C. The results suggested
that upward flows exist for water temperatures below 4.7°C. Completely downward flowing

boundary layers are suggested for temperatures about 7°C. At 4.7°C an oscillatory dual flow situ-
ation begins to occur. As the temperature is increased, this phenomenon is increasingly prevalent,
with increasing downward velocities reaching a maximum at 5.6°C. Figure 77 shows a comparison

between the Wilson and Vyas (1979) experimental data and predictions obtained from free
convective boundary layer theories by Bagley et al. (1972) and Vanier and Tien (1970). The work
of Bagley et al. predicts a maximum velocity higher than that of the data and a significantly thinner

boundary layer thickness. Disagreement may be attributed to the high degree of sensitivity of the
analysis to the fluid density.

As indicated in Figure 78a as the water temperature rises to 3.21C, the net buoyancy forces in-
crease resulting in an increase in the maximum velocity. At 4.41C, the flow is still upward, although

the maximum velocity is lower and the boundary layer is slightly thinner than at 3.2"C (Fig. 78b).
because of the downwards buoyancy occurring in the portion of the profile with the temperature
between 4* and 4.4*C. At 4.7*C (Fig. 78c) a similar but stronger tendency is noted as the result of the
increased downward buoyancy existing in the outer portion of the boundary layer. The distinct
difference in the two maximum velocities suggested the oscillating nature of the water flow at this

temperature.

At 5*C (Fig. 79a) the oscillatory dual flow characteristics are clearly established, and it can be noted
that the upward flowing portion is substantially thinner and is accompanied by a decrease in the
maximum upward velocity when downflow exists. This trend is continued for T- 5.3 , 5.6 and 5.9*C

as shown in Figures 79b, c and d, respectively. In each case, oscillatory dual flow exists continuously;
i.e., upward flows were not observed at any time beyond the near-wall upward flow region. At 5.3*C,
the position of maximum downward velocity oscillates between 7.3 and 11.5 mm from the wall. For
5.6*C, it lies between 6 mm and 18 mm, but at 5.9*C, this variation is limited to 5.2 to 8.0 mm. In
addition, the profiles at 5.9*C (Fig. 79d) pose much greater self-similarity than those of 5.3* and

5.6*C. Thus the flow phenomena for 5.3* and 5.6°C seem to be substantially more complex than that
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4.7'C (Wilson and Vyas 1979).

at 5.9°C. In both Figures 79b and 79d there are small regions of the order of I to 2 mm in thickness
near the wall where upwards flow exists, while at 5.6°C much smaller velocities were observed
within the same region but with much lower maximum velocity. Figure 79e shows the characteristics
of a relatively stable downward flow regime. In this case, the portion of the boundary layer with
upward buoyancy is approximately 0.5 to 1.0 mm in thickness. The downward buoyancy forces in
the outer portion are much stronger and the whole flow is downward, because the viscous forces,
which tend to draw the fluid downward, approximately balance the upward buoyancy forces near
the ice. The velocity gradient is approximately zero at the ice surface.
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Figure 79 (cont'd).
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DISCUSSION AND CONCLUSIONS

This review covers only the problems associated with the anomalous density-temperature
relationship of water contained in various geometrical systems. The discussion and conclusion are
classified into two subjects: 1) onset of convection, 2) flow patterns and natural convective heat
transfer.

Onset of convection
The criterion for the onset of convection of a confined horizontal layer that contains a density

extremum was found both experimentally (Yen 1968, Yen and Galea 1969) and analytically (Veronis
1963, Sun et al. 1969, Merker et al. 1979) to not be a constant value, as in the classical Benard
problem, but dependent on the thermal boundary conditions.* This is evident in Figure 4, in which
Rac was plotted explicitly vs T1 or T2. In the case of melting from the top, the higher the values of
T2, the greaterRa c becomes; in otherwords, the farther removed temperature T2 is from 4*C, the less
prone the layer is to begin the onset of convection. In the case of melting from below, as temperature
T1 increases, Rac decreases exponentially and asymptotically approaches the value - 1708, as re-
ported in the classical Benard problem. This is evident because, as TI becomes higher and higher,
the buoyancy forces created by temperature difference AT (= T, - Tmax) possess a much stronger
influence on the layer stability than the effect produced by the density extremum (i.e., at - 40C), and
subsequently the continuously forming layer behaves like a normal fluid (i.e., there is a monotonic

* If the layer is formed by phase transition, then one of the thermal boundaries is at the ice melting point, i.e.,

Tm = O°C.
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density-temperature relationship) as in the Benard problem. On the other hand, as T, decreases and
approaches the temperature of the density extremum, Rac increases and approaches the limiting
value of infinity. This is also expected, since if T, is maintained at - 4°C, the water has its greatest
density at the lower boundary and the water layer will always remain stable.

In the case of a water layer formed by melting ice from above, the trend of variation of Rac with
boundary temperature is simply reversed. The higher the temperature T2, the greater Ra c becomes.
This can be explained by noting that if T2 is maintained in the range of 0 < T2 < 40C, the entire layer
is unstable because the higher density water will overlie the less dense water underneath, and will
consequently result in lower Ra. values. If T2 is maintained at a higher temperature than 40C, only
a fraction of the layer (= 4H/T2) is potentially unstable, and the layer is less prone to onset of
convection. It seems that the Ra € value grows increasingly greater as the effect of the density
extremum becomes less pronounced. It is also interesting to note that the two Rac curves intersect
at exactly T, = T2 = 80C, which clearly indicates that under these particular thermal conditions, the
two systems are identical and have a unique Rac value regardless of how the water layer was formed.

In the case of a confined pure water layer, Merkeret al. (1979) reported Rac values for both constant
temperature and constant heat flux thermal boundaries. The effect of T, and T2 on Rac seems to be
similar but with higher values ofRa € for the cases of Tw = constant (see Fig. 6 and 7). They indicated
that the values for Rac depend on the specific values of T, and T2. A few comparisons between the
results from Sun et al. and Merker et al. were found to be in good agreement.

The stability problem, equivalent to the case of melting from above, was studied by Seki et al.
(1977) with the added condition of a free surface maintained either at T2 > 40C or T2 5 4*C and T,
at 00C. For T2 < 80C, they demonstrated both analytically and experimentally that the criterion of
hydrodynamic stability in a water with a density inversion is dependent on the free water-surface
temperature T2 and increases as surface tension increases and decreases as T2 is lowered, resulting
in a reduction of the stable layer thicknesses. On the other hand, for T2 > 80C, the criterion is found
to be independent of Tand approaihes asymptotically a limiting value of a modified critical
Rayleigh number, i.e., Rac - 500, as predicted by Sun et al. (1969).

Hassab and Sorour (1982) reported the first analytical study on the stability of the conduction
regime of natural convection in a vertical melt layer formed by melting ice. Their stability criterion
is expressed in terms of critical Grashof number Grc. The values ofGrc (and the corresponding critical
melting thickness hc) are dependent upon the stepped wall temperature TI, such that as T, is in-
creased the change in heat transfer mode from conduction to convection is enhanced for 4ll values
ofT, in the range of 1P to 30°C'. They found that the instability sets in as vertical traveligg waves,
with the secondary flow occurring as two-column waves for T, < 7.1 °C and T, > 9.4°C, and as three-
column waves for 7. 10C < T1 < 9.4*C.

Flow patterns and
natural convective heat transfer

The most striking phenomenon that results from the presence of a fluid density maximum within
a confined area is the creation of an unusual temperature distribution and its associated cellular
formation and flow, which are directly related to geometrical arrangement (i.e., in a confined
horizontal layer, in a vertical gap, in a cylindrical annulus, or in a rectangular and square enclosure).
In a horizontal layer formed by melting ice (in this case, one in which the boundary is ice at its
melting temperature), the transient temperature and its pseudo-steady temperature distribution can
be represented as shown in Figures 67 and 68. It can be noted that the unique features of these
distributions are the formation and expansion of the constant temperature region. The heat flux
across the water/ice interface was found to be a weak function of temperature for the melt layer for
the case of melting from above and a linear function of temperature for the case of melting from
below.

Lankford and Bejan (1986) developed a unique heat transfer correlation based on scale analysis
for water near 4*C. The curve shown in Figure 27 was obtained from eq 35,with C, = 0.31 and C2
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= 0.5, and a set of specific Rayleigh numbers based on the hot and cold sides boundary layers,
respectively. Without this modification the ordinary correlation for normal fluids (or water warmer
than 4'C), e.g., eq 25 or Figure 25, failed to represent the data, including the results for temperatures
near 4°C or below.

Figures 29a, b, c, and d typically demonstrated the temperature distribution and cell rotation
pattern in a square enclosure (aspect ratio, A = 1, K-= ro/ i = 1; no curvature effect) as function of
values ofR',whenR'= 0.5 (i.e., when the maximum density is in the middle plane). The temperature
distribution as well as the cell size are nearly identical except rotating in the opposite direction.
When R' = 1.0, (i.e., the hot wall temperature is equal to the Tn), the water behaves as a normal
Boussinesq fluid except for the direction of circulation. The effect of A on temperature distribution
and flow pattern is clearly demonstrated in Figure 31. As A increases, the convection heat transfer
occurs only at the top of the annulus, and not at the near-bottom, because of the dual cell structure.
The effect of K and Ra' on the heat transfer at the inner wall (relative to conduction) is shown in
Figure 33. From this study, it is evident that density inversion phenomena are altered substantially
by the curvature of the annulus. A particular steady flow structure is determined by the combination
of the inversion parameter R' and the curvature K. A transition from inner to outer convective cell
dominance can be accomplished by either increasing R'orby increasing the curvature Kofthe annulus.

Seki et al. (1975) described the only experimental study of the effect of water near 4*C on natural
convective heat transfer between two horizontal concentric cylinders. They reported that the effect
of density inversion is unexpectedly large and, especially when two counter-eddies of approxi-
mately the same size coexist in the gap, the average Nusselt number indicated a minimum value and
the minimum Nu increasing as the gap width increased (see Fig. 39). However, there seemed to be
no definite pattern as to the temperatures where the minimum heat transfer occurred.

The analytical work of Nguyen et al. (1982) confirmed the experimental findings of Seki et al.
(1975). The pattern of circulation and angular velocity are functions of inversion parameters y 'as
well as outer to inner radius ratio, i.e., R' and the Rayleigh number. A slight variation in -y' creates
a radical change in cellular configuration. The minimum coefficient of convective heat transfer is
found to deviate from y' = -I as R' increases (see Figs. 40, 41, 42 and 43).

The extension of this work by Vasseuret al. (1983) further delineated the temperature distribution
and the circulation pattern within the cylindrical annulus, especially forlh h Rayleigh numbers. For
R'= 2.6 and Ran varying from 2 x 103 to 7 x 104, an overall minimum Nu was found to occur at y'
= -0.85. On the other hand for Ra n = I x 104, the minimum Nu occurs at y" > -I but approaches

= -1 as R' increases from 1.75 to 2.6.
The work of Watson (1972) and later Lin and Nansteel (I 987a) on the effect of density inversion

on the temperature distribution and heat transfer in a square enclosure is a special case of that for
rectangular enclosures. Watson demonstrated that the variation of Nu with the warm temperature
boundary T, between the full equation and constant viscosity model are negligible for T, < 80 C but
deviate from each other as T, > - 90 C. On the other hand, the Boussinesq model displayed a
completely different heat transfer phenomenon (see Fig. 47). For a square enclosure, for R' values
ranging from 0 to 1, the average Nu was found to be symmetrical with respect to R' = 0.5, with a
minimum at R' = 0.5, and increases as Ra increases.

For rectangular enclosures, Desai and Forbes (1981) numerically calculated that the Nusselt
number is always higher for the Tc-Th range of 00 to 80C than for the Tc-T h range of 20 to 60C
(although for both cases R' = 1/2) independent of the temperature-density representation and aspect
ratio. Nansteel et al. (1 987) also found that the value ofNu is very sensitive toR" as well as the aspect
ratio. The minimum Nu occurs at R' = 1/2, and it increases with increasing A.

The effects of 4C on the natural convective heat transfer and temperature distribution with initial
temperatures at 40 and 8*C were reported by Forbes and Cooper (1975) who cooled water from the
top with either a rigid boundary condition at constant temperature or a free water-air surface with
constant convective heat transfer coefficient. They demonstrated that the eddy's formation is closely
related to the position of the maximum isotherm. At the beginning, one cell was formed below the
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4°C line (square enclosure). As the 4°C curve descended farther, two cells were formed on top of
each other, with part of the 4°C line as the boundary and, finally, the two cells returned to one eddy
(or one cell) as the 4°C line progressed through the bottom of the container. For WID > 1, the same
mechanism of cell formation was observed, but the number of eddies formed was not in any way
related to the values of W/D. (Based on limited data, for W/D = 3, three eddies with unequal size were
formed; however, for W/D = 6, seven eddies were noted.)

Yen (1968) and Yen and Galea (1969) performed the only experimental work on temperature
distribution and heat transfer in a melt layer formed by melting ice (with ice initially at its fusion
temperature). Four cases of melting layers were set up, with T, > 4°C (melting from below) and T2
>4°C (melting from above). In the case of = 4°C the whole melt layer was always stable, but for
T2 = 4°C the whole layer was unstable. For Ti and T2 > 4*C, the melt layer consisted of one stable
and one unstable region. The effects of these unstable regions on temperature distribution, heat
transfer and onset of convection were found dependent on mode of melting. The most striking
feature in the ice-melting system was the formation andexpansion of the constant temperature zone,
which had a temperature of about 3.2°C, regardless of the value of T2, but had a dependency on T,
in the case of melting from below.

For the case of ice melting in bulk water, experimental and analytical studies reveal the existence
of split-flow at the inversion temperature Tiv, (i.e., for T - < Tiv the boundary layer flow is upward,
and for T > T.v the entire boundary layer is downward). The inversion temperature was found to
be about 5° or 6°C for a great number of phase-transition geometries, but not at the temperature of
maximum density (= 4°C).
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